864 research outputs found

    An inhomogeneous Josephson phase in thin-film and High-Tc superconductors

    Full text link
    In many cases inhomogeneities are known to exist near the metal (or superconductor)-insulator transition, as follows from well-known domain-wall arguments. If the conducting regions are large enough (i.e. when the T=0 superconducting gap is much larger than the single-electron level spacing), and if they have superconducting correlations, it becomes energetically favorable for the system to go into a Josephson-coupled zero-resistance state before (i.e. at higher resistance than) becoming a "real" metal. We show that this is plausible by a simple comparison of the relevant coupling constants. For small grains in the above sense, the electronic grain structure is washed out by delocalization and thus becomes irrelevant. When the proposed "Josephson state" is quenched by a magnetic field, an insulating, rather then a metallic, state should appear. This has been shown to be consistent with the existing data on oxide materials as well as ultra-thin films. We discuss the Uemura correlations versus the Homes law, and derive the former for the large-grain Josephson array (inhomogenous superconductor) model. The small-grain case behaves like a dirty homogenous metal. It should obey the Homes law provided that the system is in the dirty supeconductivity limit. A speculation why that is typically the case for d-wave superconductors is presented.Comment: Conference proceeding for "Fluctuations in Superconductors" held in Nazareth, Israel in June, 2007; 6 pages with 1 figure, to appear in Physica

    Path integrals approach to resisitivity anomalies in anharmonic systems

    Full text link
    Different classes of physical systems with sizeable electron-phonon coupling and lattice distortions present anomalous resistivity behaviors versus temperature. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. A path integral model is developed to select the class of atomic oscillations which mainly contributes to the partition function and the electrical resistivity is computed in a number of representative cases. We argue that the common origin of the observed resistivity anomalies lies in the time retarded nature of the polaronic interactions in the local structural instabilities.Comment: 4 figures, to appear in Phys.Rev.B, May 1st (2001

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    Necessary Optimality Conditions for Higher-Order Infinite Horizon Variational Problems on Time Scales

    Full text link
    We obtain Euler-Lagrange and transversality optimality conditions for higher-order infinite horizon variational problems on a time scale. The new necessary optimality conditions improve the classical results both in the continuous and discrete settings: our results seem new and interesting even in the particular cases when the time scale is the set of real numbers or the set of integers.Comment: This is a preprint of a paper whose final and definite form will appear in Journal of Optimization Theory and Applications (JOTA). Paper submitted 17-Nov-2011; revised 24-March-2012 and 10-April-2012; accepted for publication 15-April-201

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure

    A first-principles approach to electrical transport in atomic-scale nanostructures

    Full text link
    We present a first-principles numerical implementation of Landauer formalism for electrical transport in nanostructures characterized down to the atomic level. The novelty and interest of our method lies essentially on two facts. First of all, it makes use of the versatile Gaussian98 code, which is widely used within the quantum chemistry community. Secondly, it incorporates the semi-infinite electrodes in a very generic and efficient way by means of Bethe lattices. We name this method the Gaussian Embedded Cluster Method (GECM). In order to make contact with other proposed implementations, we illustrate our technique by calculating the conductance in some well-studied systems such as metallic (Al and Au) nanocontacts and C-atom chains connected to metallic (Al and Au) electrodes. In the case of Al nanocontacts the conductance turns out to be quite dependent on the detailed atomic arrangement. On the contrary, the conductance in Au nanocontacts presents quite universal features. In the case of C chains, where the self-consistency guarantees the local charge transfer and the correct alignment of the molecular and electrode levels, we find that the conductance oscillates with the number of atoms in the chain regardless of the type of electrode. However, for short chains and Al electrodes the even-odd periodicity is reversed at equilibrium bond distances.Comment: 14 pages, two-column format, submitted to PR

    Transversality Conditions for Infinite Horizon Variational Problems on Time Scales

    Full text link
    We consider problems of the calculus of variations on unbounded time scales. We prove the validity of the Euler-Lagrange equation on time scales for infinite horizon problems, and a new transversality condition.Comment: Submitted 6-October-2009; Accepted 19-March-2010 in revised form; for publication in "Optimization Letters"

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore