397 research outputs found

    Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large p⊄p_{\perp} π0\pi^0 spectra

    Get PDF
    We discuss the question of the relevance of perturbative QCD calculations for analyzing the properties of the dense medium produced in heavy ion collisions. Up to now leading order perturbative estimates have been worked out and confronted with data for quenched large p⊄p_{\perp} hadron spectra. Some of them are giving paradoxical results, contradicting the perturbative framework and leading to speculations such as the formation of a strongly interacting quark-gluon plasma. Trying to bypass some drawbacks of these leading order analysis and without performing detailed numerical investigations, we collect evidence in favour of a consistent description of quenching and of the characteristics of the produced medium within the pQCD framework.Comment: 10 pages, 3 figure

    Photon tagged correlations in heavy ion collisions

    Full text link
    A detailed study of various two-particle correlation functions involving photons and neutral pions is presented in proton-proton and lead-lead collisions at the LHC energy. The aim is to use these correlation functions to quantify the effect of the medium (in lead-lead collisions) on the jet decay properties. The calculations are carried out at the leading order in QCD but the next-to-leading order corrections are also discussed. The competition between different production mechanisms makes the connection between the jet energy loss spectrum and the gamma-pi correlations somewhat indirect while the gamma-gamma correlations have a clearer relation to the jet fragmentation properties.Comment: 32 pages, 19 figures. Minor changes, published versio

    Multiplicity distributions inside parton cascades developing in a medium

    Get PDF
    The explanation of the suppression of high-pT hadron yields at RHIC in terms of jet-quenching implies that the multiplicity distributions of particles inside a jet and jet-like particle correlations differ strongly in nucleus-nucleus collisions at RHIC or at the LHC from those observed at e+e- or hadron colliders. We present a framework for describing the medium-induced modification, which has a direct interpretation in terms of a probabilistic medium-modified parton cascade, and which treats leading and subleading partons on an equal footing. We show that our approach can account for the strong suppression of single inclusive hadron spectra measured in Au-Au collisions at RHIC, and that this implies a characteristic distortion of the single inclusive distribution of soft partons inside the jet. We determine, as a function of the jet energy, to what extent the soft fragments within a jet can be measured above some momentum cut.Comment: 5 pages, 4 eps-figures; talk given at Hot Quarks 2006, Villasimius (Sardinia, Italy), May 15-20, 200

    The Ter-Mikayelian Effect on QCD Radiative Energy Loss

    Full text link
    The color dielectric modification of the gluon dispersion relation in a dense QCD medium suppresses both the soft and collinear gluon radiation associated with jet production. We compute both the longitudinal and transverse plasmon contributions to the zeroth order in opacity radiative energy loss. This QCD analog of the Ter-Mikayelian effect in QED leads to ∌30\sim 30% reduction of the energy loss of high transverse momentum charm quarks produced in a QCD plasma with a characteristic Debye mass Ό∌0.5\mu\sim 0.5 GeV.Comment: 18 Pages, 16 Figure

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    A Monte Carlo Model for 'Jet Quenching'

    Full text link
    We have developed the Monte Carlo simulation program JEWEL 1.0 (Jet Evolution With Energy Loss), which interfaces a perturbative final state parton shower with medium effects occurring in ultra-relativistic heavy ion collisions. This is done by comparing for each jet fragment the probability of further perturbative splitting with the density-dependent probability of scattering with the medium. A simple hadronisation mechanism is included. In the absence of medium effects, we validate JEWEL against a set of benchmark jet measurements. For elastic interactions with the medium, we characterise not only the medium-induced modification of the jet, but also the jet-induced modification of the medium. Our main physics result is the observation that collisional and radiative medium modifications lead to characteristic differences in the jet fragmentation pattern, which persist above a soft background cut. We argue that this should allow to disentangle collisional and radiative parton energy loss mechanisms by measuring the n-jet fraction or a class of jet shape observables.Comment: 16 pages, 10 figures, v2: version accepted by EPJ

    Measurement of the Polarized Structure Function σLTâ€Č\sigma_{LT^\prime} for p(e⃗,eâ€Čπ+)np(\vec{e},e'\pi^+)n in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLTâ€Č\sigma_{LT^\prime} has been measured using the p(e⃗,eâ€Čπ+)np(\vec e,e'\pi^+)n reaction in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. No previous σLTâ€Č\sigma_{LT^\prime} data exist for this reaction channel. The kinematically complete experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. A partial wave analysis of the data shows generally better agreement with recent phenomenological models of pion electroproduction compared to the previously measured π0p\pi^0 p channel. A fit to both π0p\pi^0 p and π+n\pi^+ n channels using a unitary isobar model suggests the unitarized Born terms provide a consistent description of the non-resonant background. The tt-channel pion pole term is important in the π0p\pi^0 p channel through a rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2: Updated referenc

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure

    Q2Q^2 Dependence of Quadrupole Strength in the γ∗p→Δ+(1232)→pπ0\gamma^*p\to\Delta^+(1232)\to p \pi^0 Transition

    Full text link
    Models of baryon structure predict a small quadrupole deformation of the nucleon due to residual tensor forces between quarks or distortions from the pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through the Q2Q^2 dependence of the magnetic (M1+M_{1+}), electric (E1+E_{1+}), and scalar (S1+S_{1+}) multipoles in the γ∗p→Δ+→pπ0\gamma^* p \to \Delta^+ \to p \pi^0 transition. We report new experimental values for the ratios E1+/M1+E_{1+}/M_{1+} and S1+/M1+S_{1+}/M_{1+} over the range Q2Q^2= 0.4-1.8 GeV2^2, extracted from precision p(e,eâ€Čp)π∘p(e,e 'p)\pi^{\circ} data using a truncated multipole expansion. Results are best described by recent unitary models in which the pion cloud plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett. (References, figures and table updated, minor changes.
    • 

    corecore