9 research outputs found

    Rare-earth-activated glasses for solar energy conversion

    Get PDF
    The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cut-off phonon energy are mandatory. In this paper we present some results concerning 70SiO2-30HfO2 glass ceramic planar waveguides co-activated by Tb3+/Yb3+ ions, fabricated by sol gel route using a top-down approach, and a bulk fluoride glass of molar composition 70ZrF4 23.5LaF3 0.5AlF3 6GaF3 co-activated by Pr3+/Yb3+ ion. Attention is focused on the assessment of the energy transfer efficiency between the two couples of rare earth ions in the different hosts

    A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry

    Get PDF
    Background Genome-wide studies of gene–environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. Methods Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene–environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. Results Assuming a 1 × 10–5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92–0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88–0.94). Conclusions Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer

    Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2

    Get PDF
    We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 x 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans 14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 x 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 x 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 x 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-alpha, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.Peer reviewe

    19p13.1 is a triple-negative-specific breast cancer susceptibility locus

    No full text
    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05–1.15; P = 3.49 × 10−5] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13–1.31; P = 2.22 × 10−7). However, rs8170 was no longer associated with ER-negative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89–1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18–1.33; P = 3.31 × 10−13]. Thus, 19p13.1 is the first triple-negative–specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways. Cancer Res; 72(7); 1795–803. ©2012 AACR

    19p13.1 Is a triple-negative-specific breast cancer susceptibility locus

    No full text
    The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with the risk of ovarian cancer. Here, we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 OR, 1.10; 95% confidence interval (CI), 1.05-1.15; P = 3.49 × 10-5] and triple-negative (ER-, PR-, and HER2-negative) breast cancer (rs8170: OR, 1.22; 95% CI, 1.13-1.31; P = 2.22 × 10-7). However, rs8170 was no longer associated with ERnegative breast cancer risk when triple-negative cases were excluded (OR, 0.98; 95% CI, 0.89-1.07; P = 0.62). In addition, a combined analysis of triple-negative cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC; N = 3,566) identified a genome-wide significant association between rs8170 and triple-negative breast cancer risk (OR, 1.25; 95% CI, 1.18-1.33; P=3.31×10-13]. Thus, 19p13.1 is the first triple-negative- specific breast cancer risk locus and the first locus specific to a histologic subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple-negative tumors and other subtypes likely arise through distinct etiologic pathways. ©2012 AACR

    Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization.

    No full text
    Background Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the association remain unclear.Methods We performed a meta-analysis to investigate associations between height and breast cancer risk using data from 159 prospective cohorts totaling 5216302 women, including 113178 events. In a consortium with individual-level data from 46325 case patients and 42482 control patients, we conducted a Mendelian randomization analysis using a genetic score that comprised 168 height-associated variants as an instrument. This association was further evaluated in a second consortium using summary statistics data from 16003 case patients and 41335 control patients.Results The pooled relative risk of breast cancer was 1.17 (95% confidence interval [CI] = 1.15 to 1.19) per 10cm increase in height in the meta-analysis of prospective studies. In Mendelian randomization analysis, the odds ratio of breast cancer per 10cm increase in genetically predicted height was 1.22 (95% CI = 1.13 to 1.32) in the first consortium and 1.21 (95% CI = 1.05 to 1.39) in the second consortium. The association was found in both premenopausal and postmenopausal women but restricted to hormone receptor-positive breast cancer. Analyses of height-associated variants identified eight new loci associated with breast cancer risk after adjusting for multiple comparisons, including three loci at 1q21.2, DNAJC27, and CCDC91 at genome-wide significance level P < 5×10(-8).Conclusions Our study provides strong evidence that adult height is a risk factor for breast cancer in women and certain genetic factors and biological pathways affecting adult height have an important role in the etiology of breast cancer

    Genome-wide association analysis identifies three new breast cancer susceptibility loci

    Get PDF
    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in ∼70,000 cases and ∼68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10(-35)), 12q24 (rs1292011; P = 4.3 × 10(-19)) and 21q21 (rs2823093; P = 1.1 × 10(-12)). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

    No full text
    Surgical oncolog
    corecore