355 research outputs found
Early development of spasticity following stroke: a prospective, observational trial
This study followed a cohort of 103 patients at median 6 days, 6 and 16 weeks after stroke and recorded muscle tone, pain, paresis, Barthel Index and quality of life score (EQ-5D) to identify risk-factors for development of spasticity. 24.5% of stroke victims developed an increase of muscle tone within 2 weeks after stroke. Patients with spasticity had significantly higher incidences of pain and nursing home placement and lower Barthel and EQ-5D scores than patients with normal muscle tone. Early predictive factors for presence of severe spasticity [modified Ashworth scale score (MAS) ≥3] at final follow-up were moderate increase in muscle tone at baseline and/or first follow-up (MAS = 2), low Barthel Index at baseline, hemispasticity, involvement of more than two joints at first follow-up, and paresis at any assessment point. The study helps to identify patients at highest risk for permanent and severe spasticity, and advocates for early treatment in this group
Meson screening masses from lattice QCD with two light and the strange quark
We present results for screening masses of mesons built from light and
strange quarks in the temperature range of approximately between 140 MeV to 800
MeV. The lattice computations were performed with 2+1 dynamical light and
strange flavors of improved (p4) staggered fermions along a line of constant
physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The
lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq
4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass
remains almost equal to the corresponding zero temperature pseudo-scalar (pole)
mass. At temperatures around 3Tc (Tc being the transition temperature) the
continuum extrapolated pseudo-scalar screening mass approaches very close to
the free continuum result of 2 \pi T from below. On the other hand, at high
temperatures the vector screening mass turns out to be larger than the free
continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses
do not become degenerate even for a temperature as high as 4Tc. Using these
mesonic spatial correlation functions we have also investigated the restoration
of chiral symmetry and the effective restoration of the axial symmetry. We have
found that the vector and the axial-vector screening correlators become
degenerate, indicating chiral symmetry restoration, at a temperature which is
consistent with the QCD transition temperature obtained in previous studies. On
the other hand, the pseudo-scalar and the scalar screening correlators become
degenerate only at temperatures larger than 1.3Tc, indicating that the
effective restoration of the axial symmetry takes place at a temperature larger
than the QCD transition temperature.Comment: Published versio
Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: An interlaboratory comparison of three common measurement approaches
Rationale
Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3− and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking.
Methods
Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3− and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM-N2O) or N2 (CM-N2), and (c) the denitrifier (DN) methods.
Results
The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2O performing superior for both NO3− and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3− and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered
Efficient Dynamic Importance Sampling of Rare Events in One Dimension
Exploiting stochastic path integral theory, we obtain \emph{by simulation}
substantial gains in efficiency for the computation of reaction rates in
one-dimensional, bistable, overdamped stochastic systems. Using a well-defined
measure of efficiency, we compare implementations of ``Dynamic Importance
Sampling'' (DIMS) methods to unbiased simulation. The best DIMS algorithms are
shown to increase efficiency by factors of approximately 20 for a
barrier height and 300 for , compared to unbiased simulation. The
gains result from close emulation of natural (unbiased), instanton-like
crossing events with artificially decreased waiting times between events that
are corrected for in rate calculations. The artificial crossing events are
generated using the closed-form solution to the most probable crossing event
described by the Onsager-Machlup action. While the best biasing methods require
the second derivative of the potential (resulting from the ``Jacobian'' term in
the action, which is discussed at length), algorithms employing solely the
first derivative do nearly as well. We discuss the importance of
one-dimensional models to larger systems, and suggest extensions to
higher-dimensional systems.Comment: version to be published in Phys. Rev.
Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057
HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray
sources which appear to be point-like within experimental resolution. It is
possibly associated with the massive Be star MWC 148 and has been suggested to
resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057
was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these
observations, no significant signal in gamma rays with energies above 1 TeV was
detected from the direction of HESS J0632+057. A flux upper limit corresponding
to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data.
The non-detection by VERITAS excludes with a probability of 99.993% that HESS
J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations
with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range
than earlier X-ray observations of HESS J0632+057. The variability in the
gamma-ray and X-ray fluxes supports interpretation of the ob ject as a
gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical
Journa
Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments
The primary science goal of the NASA-sponsored ANITA project is measurement
of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency
signals resulting from a neutrino- or cosmic ray- interaction with terrestrial
matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies
of these cosmic rays requires understanding the transmission/reflection of
radio wave signals across the ice-air boundary. Satellite-based measurements of
Antarctic surface reflectivity, using a co-located transmitter and receiver,
have been performed more-or-less continuously for the last few decades.
Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and
at near-normal incidence, yield generally consistent reflectivity maps across
Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne
radio-frequency antenna array as the RF receiver, we have also measured the
surface reflectivity over the interval 200-1000 MHz, at elevation angles of
12-30 degrees, finding agreement with the Fresnel equations within systematic
errors. To probe low incidence angles, inaccessible to the Antarctic Solar
technique and not probed by previous satellite surveys, a novel experimental
approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA
constitute a bi-static transmitter-receiver pair separated by hundreds of
kilometers. Data taken with HiCal, between 200--600 MHz shows a significant
departure from the Fresnel equations, constant with frequency over that band,
with the deficit increasing with obliquity of incidence, which we attribute to
the combined effects of possible surface roughness, surface grain effects,
radar clutter and/or shadowing of the reflection zone due to Earth curvature
effects.Comment: updated to match publication versio
Early Warning Signals for Critical Transitions: A Generalized Modeling Approach
Critical transitions are sudden, often irreversible, changes that can occur in a large variety of complex systems; signals that warn of critical transitions are therefore highly desirable. We propose a new method for early warning signals that integrates multiple sources of information and data about the system through the framework of a generalized model. We demonstrate our proposed approach through several examples, including a previously published fisheries model. We regard our method as complementary to existing early warning signals, taking an approach of intermediate complexity between model-free approaches and fully parameterized simulations. One potential advantage of our approach is that, under appropriate conditions, it may reduce the amount of time series data required for a robust early warning signal
- …