573 research outputs found

    A combined study of heat and mass transfer in an infant incubator with an overhead screen

    Get PDF
    The main objective of this study is to investigate the major physical processes taking place inside an infant incubator, before and after modifications have been made to its interior chamber. The modification involves the addition of an overhead screen to decrease radiation heat losses from the infant placed inside the incubator. The present study investigates the effect of these modifications on the convective heat flux from the infant’s body to the surrounding environment inside the incubator. A combined analysis of airflow and heat transfer due to conduction, convection, radiation and evaporation has been performed, in order to calculate the temperature and velocity fields inside the incubator before and after the design modification. Due to the geometrical complexity of the model, Computer-Aided Design (CAD) applications were used to generate a computer-based model. All numerical calculations have been performed using the commercial Computational Fluid Dynamics (CFD) package FLUENT, together with in-house routines used for managing purposes and User-Defined Functions (UDFs) which extend the basic solver capabilities. Numerical calculations have been performed for three different air inlet temperatures: 32, 34 and 36ºC. The study shows a decrease of the radiative and convective heat losses when the overhead screen is present. The results obtained were numerically verified as well as compared with results available in the literature from investigations of dry heat losses from infant manikins

    Structure of 10Be from the 12C 12C,14O 10Be reaction

    Get PDF
    The 12C 12C,14O two proton pick up reaction has been measured at 211.4 MeV incident energy to study the structure of states of 10Be up to excitation energies of 12 MeV. The measured partial angular distributions show pronounced oscillatory shapes, which were described by coupled reaction channels calculations. Spin parity assignments could be derived from these characteristic shapes and two definite assignments have been made. The state at 11.8 MeV has been identified as the 4 member of the ground state band, and the state at 10.55 MeV is assigned J pi 3 . At 5.96 MeV only the 1 1 member of the known 2 2 1 1 doublet is populated. The angular distribution of the peak at 9.50 MeV, which consists of several unresolved states, has been unfolded using contributions from known states at 9.56 MeV, 2 , and 9.27 MeV, 4 . The inclusion of a state at 9.4 MeV reported by Daito it et al. from the 10B t,3He 10Be reaction and tentatively assigned 3 improved the fit considerably. A K 2 band is formed with the 2 2 state as the band head and the 3 state as the second member. The structures of the K pi 0 1, 2 2, and 1 1 bands are discusse

    New Measurement of the Direct 3α Decay from the 12C Hoyle State

    Get PDF
    Excited states in certain atomic nuclei possess an unusual structure, where the dominant degrees of freedom are those of α clusters rather than individual nucleons. It has been proposed that the diffuse 3α system of the 12C Hoyle state may behave like a Bose-Einstein condensate, where the α clusters maintain their bosonic identities. By measuring the decay of the Hoyle state into three α particles, we obtained an upper limit for the rare direct 3α decay branch of 0.047%. This value is now at a level comparable with theoretical predictions and could be a sensitive probe of the structure of this state

    Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions.

    Get PDF
    Radiolabelled meta-iodobenzylguanidine (MIBG) is selectively taken up by tumours of neuroendocrine origin, where its cellular localization is believed to be cytoplasmic. The radiopharmaceutical [131I]MIBG is now widely used in the treatment of neuroblastoma, but other radioconjugates of benzylguanidine have been little studied. We have investigated the cytotoxic efficacy of beta, alpha and Auger electron-emitting radioconjugates in treating neuroblastoma cells grown in monolayer or spheroid culture. Using a no-carrier-added synthesis route, we produced 123I-, 125I-, 131I- and 211At-labelled benzylguanidines and compared their in vitro toxicity to the neuroblastoma cell line SK-N-BE(2c) grown in monolayer and spheroid culture. The Auger electron-emitting conjugates ([123I]MIBG and [125I]MIBG) and the alpha-emitting conjugate ([211At]MABG) were highly toxic to monolayers and small spheroids, whereas the beta-emitting conjugate [131I]MIBG was relatively ineffective. The Auger emitters were more effective than expected if the cellular localization of MIBG is cytoplasmic. As dosimetrically predicted however, [211At]MABG was found to be extremely potent in terms of both concentration of radioactivity and number of atoms ml(-1) administered. In contrast, the Auger electron emitters were ineffective in the treatment of larger spheroids, while the beta emitter showed greater efficacy. These findings suggest that short-range emitters would be well suited to the treatment of circulating tumour cells or small clumps, whereas beta emitters would be superior in the treatment of subclinical metastases or macroscopic tumours. These experimental results provide support for a clinical strategy of combinations ('cocktails') of radioconjugates in targeted radiotherapy
    • …
    corecore