1,741 research outputs found
Optical Maser Photon Rate Gyroscope
Resonant frequency equations for optical maser photon rate gyroscope desig
An Evaluation of the Optical Maser Photon Rate Gyroscope
Mathematical development of resonant frequencies of electromagnetic cavity - Evaluation of optical maser photon rate gyroscop
Effect of a magnetic field on the two-phonon Raman scattering in graphene
We have studied, both experimentally and theoretically, the change of the
so-called 2D band of the Raman scattering spectrum of graphene (the two-phonon
peak near 2700 cm-1) in an external magnetic field applied perpendicular to the
graphene crystal plane at liquid helium temperature. A shift to lower frequency
and broadening of this band is observed as the magnetic field is increased from
0 to 33 T. At fields up to 5--10 T the changes are quadratic in the field while
they become linear at higher magnetic fields. This effect is explained by the
curving of the quasiclassical trajectories of the photo-excited electrons and
holes in the magnetic field, which enables us (i) to extract the electron
inelastic scattering rate, and (ii) to conclude that electronic scattering
accounts for about half of the measured width of the 2D peak.Comment: 11 pages, 7 figure
Non-invasive nanoscale potentiometry and ballistic transport in epigraphene nanoribbons
The recent observation of non-classical electron transport regimes in
two-dimensional materials has called for new high-resolution non-invasive
techniques to locally probe electronic properties. We introduce a novel hybrid
scanning probe technique to map the local resistance and electrochemical
potential with nm- and V resolution, and we apply it to study epigraphene
nanoribbons grown on the sidewalls of SiC substrate steps. Remarkably, the
potential drop is non uniform along the ribbons, and m-long segments show
no potential variation with distance. The potential maps are in excellent
agreement with measurements of the local resistance. This reveals ballistic
transport in ambient condition, compatible with micrometer-long
room-temperature electronic mean free paths
Adiabatic orientation of rotating dipole molecules in an external field
The induced polarization of a beam of polar clusters or molecules passing
through an electric or magnetic field region differs from the textbook
Langevin-Debye susceptibility. This distinction, which is important for the
interpretation of deflection and focusing experiments, arises because instead
of acquiring thermal equilibrium in the field region, the beam ensemble
typically enters the field adiabatically, i.e., with a previously fixed
distribution of rotational states. We discuss the orientation of rigid
symmetric-top systems with a body-fixed electric or magnetic dipole moment. The
analytical expression for their "adiabatic-entry" orientation is elucidated and
compared with exact numerical results for a range of parameters. The
differences between the polarization of thermodynamic and "adiabatic-entry"
ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators
are illustrated and identified.Comment: 18 pages, 4 figure
Multiple plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos
Chrysotile asbestos is formed by densely packed bundles of multiwall hollow
nanotubes. Each wall in the nanotubes is a cylindrically wrapped layer of . We show by experiment and theory that the infrared spectrum
of chrysotile presents multiple plasmon resonances in the Si-O stretching
bands. These collective charge excitations are universal features of the
nanotubes that are obtained by cylindrically wrapping an anisotropic material.
The multiple plasmons can be observed if the width of the resonances is
sufficiently small as in chrysotile.Comment: 4 pages, 5 figures. Revtex4 compuscript. Misprint in Eq.(6) correcte
Multiparticle Clusters and Intermittent Fluctuations
An approach for understanding the behavior of multiplicity distributions in
restricted phase-space intervals derived on the basis of global observables is
proposed. We obtain a unifying connection between local multiparticle clusters
and the scale-invariant power-law behavior of normalized factorial moments. The
model can be used to describe multiparticle processes in terms of a
decomposition of the observed intermittent signal into contributions from
clusters with varying number of particles.Comment: 13 pages, LaTeX, 3 figures, epsfig.sty, cite.sty, Presented at 5th
Ann. Int. Seminar ``Non-Linear Phenomena in Complex Systems'' Minsk, Belarus,
February 199
Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene
We report results from two-dimensional Raman spectroscopy studies of
large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large
variation in Raman peak position across the sample resulting from inhomogeneity
in the strain of the graphene film, which we show to be correlated with
physical topography by coupling Raman spectroscopy with atomic force
microscopy. We report that essentially strain free graphene is possible even
for epitaxial graphene.Comment: 10 pages, 3 figure
Semiclassical theory for spatial density oscillations in fermionic systems
We investigate the particle and kinetic-energy densities for a system of
fermions bound in a local (mean-field) potential V(\bfr). We generalize a
recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev.\
Lett. {\bf 100}, 200408 (2008)], in which the densities are calculated in terms
of the closed orbits of the corresponding classical system, to
dimensions. We regularize the semiclassical results for the U(1) symmetry
breaking occurring for spherical systems at and near the classical
turning points where the Friedel oscillations are predominant and well
reproduced by the shortest orbit going from to the closest turning point
and back. For systems with spherical symmetry, we show that there exist two
types of oscillations which can be attributed to radial and non-radial orbits,
respectively. The semiclassical theory is tested against exact
quantum-mechanical calculations for a variety of model potentials. We find a
very good overall numerical agreement between semiclassical and exact numerical
densities even for moderate particle numbers . Using a "local virial
theorem", shown to be valid (except for a small region around the classical
turning points) for arbitrary local potentials, we can prove that the
Thomas-Fermi functional reproduces the oscillations in
the quantum-mechanical densities to first order in the oscillating parts.Comment: LaTeX, 22pp, 15 figs, 1 table, to be published in Phys. Rev.
Structure and properties of small sodium clusters
We have investigated structure and properties of small metal clusters using
all-electron ab initio theoretical methods based on the Hartree-Fock
approximation and density functional theory, perturbation theory and compared
results of our calculations with the available experimental data and the
results of other theoretical works. We have systematically calculated the
optimized geometries of neutral and singly charged sodium clusters having up to
20 atoms, their multipole moments (dipole and quadrupole), static
polarizabilities, binding energies per atom, ionization potentials and
frequencies of normal vibration modes. Our calculations demonstrate the great
role of many-electron correlations in the formation of electronic and ionic
structure of small metal clusters and form a good basis for further detailed
study of their dynamic properties, as well as structure and properties of other
atomic cluster systems.Comment: 47 pages, 16 figure
- …