1,741 research outputs found

    Optical Maser Photon Rate Gyroscope

    Get PDF
    Resonant frequency equations for optical maser photon rate gyroscope desig

    An Evaluation of the Optical Maser Photon Rate Gyroscope

    Get PDF
    Mathematical development of resonant frequencies of electromagnetic cavity - Evaluation of optical maser photon rate gyroscop

    Effect of a magnetic field on the two-phonon Raman scattering in graphene

    Full text link
    We have studied, both experimentally and theoretically, the change of the so-called 2D band of the Raman scattering spectrum of graphene (the two-phonon peak near 2700 cm-1) in an external magnetic field applied perpendicular to the graphene crystal plane at liquid helium temperature. A shift to lower frequency and broadening of this band is observed as the magnetic field is increased from 0 to 33 T. At fields up to 5--10 T the changes are quadratic in the field while they become linear at higher magnetic fields. This effect is explained by the curving of the quasiclassical trajectories of the photo-excited electrons and holes in the magnetic field, which enables us (i) to extract the electron inelastic scattering rate, and (ii) to conclude that electronic scattering accounts for about half of the measured width of the 2D peak.Comment: 11 pages, 7 figure

    Non-invasive nanoscale potentiometry and ballistic transport in epigraphene nanoribbons

    Full text link
    The recent observation of non-classical electron transport regimes in two-dimensional materials has called for new high-resolution non-invasive techniques to locally probe electronic properties. We introduce a novel hybrid scanning probe technique to map the local resistance and electrochemical potential with nm- and μ\muV resolution, and we apply it to study epigraphene nanoribbons grown on the sidewalls of SiC substrate steps. Remarkably, the potential drop is non uniform along the ribbons, and μ\mum-long segments show no potential variation with distance. The potential maps are in excellent agreement with measurements of the local resistance. This reveals ballistic transport in ambient condition, compatible with micrometer-long room-temperature electronic mean free paths

    Adiabatic orientation of rotating dipole molecules in an external field

    Get PDF
    The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.Comment: 18 pages, 4 figure

    Multiple plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos

    Full text link
    Chrysotile asbestos is formed by densely packed bundles of multiwall hollow nanotubes. Each wall in the nanotubes is a cylindrically wrapped layer of Mg3Si2O5(OH)4Mg_3 Si_2 O_5 (OH)_4. We show by experiment and theory that the infrared spectrum of chrysotile presents multiple plasmon resonances in the Si-O stretching bands. These collective charge excitations are universal features of the nanotubes that are obtained by cylindrically wrapping an anisotropic material. The multiple plasmons can be observed if the width of the resonances is sufficiently small as in chrysotile.Comment: 4 pages, 5 figures. Revtex4 compuscript. Misprint in Eq.(6) correcte

    Multiparticle Clusters and Intermittent Fluctuations

    Get PDF
    An approach for understanding the behavior of multiplicity distributions in restricted phase-space intervals derived on the basis of global observables is proposed. We obtain a unifying connection between local multiparticle clusters and the scale-invariant power-law behavior of normalized factorial moments. The model can be used to describe multiparticle processes in terms of a decomposition of the observed intermittent signal into contributions from clusters with varying number of particles.Comment: 13 pages, LaTeX, 3 figures, epsfig.sty, cite.sty, Presented at 5th Ann. Int. Seminar ``Non-Linear Phenomena in Complex Systems'' Minsk, Belarus, February 199

    Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene

    Full text link
    We report results from two-dimensional Raman spectroscopy studies of large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large variation in Raman peak position across the sample resulting from inhomogeneity in the strain of the graphene film, which we show to be correlated with physical topography by coupling Raman spectroscopy with atomic force microscopy. We report that essentially strain free graphene is possible even for epitaxial graphene.Comment: 10 pages, 3 figure

    Semiclassical theory for spatial density oscillations in fermionic systems

    Full text link
    We investigate the particle and kinetic-energy densities for a system of NN fermions bound in a local (mean-field) potential V(\bfr). We generalize a recently developed semiclassical theory [J. Roccia and M. Brack, Phys. Rev.\ Lett. {\bf 100}, 200408 (2008)], in which the densities are calculated in terms of the closed orbits of the corresponding classical system, to D>1D>1 dimensions. We regularize the semiclassical results (i)(i) for the U(1) symmetry breaking occurring for spherical systems at r=0r=0 and (ii)(ii) near the classical turning points where the Friedel oscillations are predominant and well reproduced by the shortest orbit going from rr to the closest turning point and back. For systems with spherical symmetry, we show that there exist two types of oscillations which can be attributed to radial and non-radial orbits, respectively. The semiclassical theory is tested against exact quantum-mechanical calculations for a variety of model potentials. We find a very good overall numerical agreement between semiclassical and exact numerical densities even for moderate particle numbers NN. Using a "local virial theorem", shown to be valid (except for a small region around the classical turning points) for arbitrary local potentials, we can prove that the Thomas-Fermi functional τTF[ρ]\tau_{\text{TF}}[\rho] reproduces the oscillations in the quantum-mechanical densities to first order in the oscillating parts.Comment: LaTeX, 22pp, 15 figs, 1 table, to be published in Phys. Rev.

    Structure and properties of small sodium clusters

    Get PDF
    We have investigated structure and properties of small metal clusters using all-electron ab initio theoretical methods based on the Hartree-Fock approximation and density functional theory, perturbation theory and compared results of our calculations with the available experimental data and the results of other theoretical works. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials and frequencies of normal vibration modes. Our calculations demonstrate the great role of many-electron correlations in the formation of electronic and ionic structure of small metal clusters and form a good basis for further detailed study of their dynamic properties, as well as structure and properties of other atomic cluster systems.Comment: 47 pages, 16 figure
    corecore