123 research outputs found

    Auxin-Binding Protein 1 is a negative regulator of the SCF(TIR1/AFB) pathway

    Get PDF
    International audienceAuxin is a major plant hormone that controls most aspects of plant growth and development. Auxin is perceived by two distinct classes of receptors: transport inhibitor response 1 (TIR1, or auxin-related F-box (AFB)) and auxin/indole-3-acetic acid (AUX/IAA) coreceptors, that control transcriptional responses to auxin, and the auxin-binding protein 1 (ABP1), that controls a wide variety of growth and developmental processes. To date, the mode of action of ABP1 is still poorly understood and its functional interaction with TIR1/AFB-AUX/IAA coreceptors remains elusive. Here we combine genetic and biochemical approaches to gain insight into the integration of these two pathways. We find that ABP1 is genetically upstream of TIR1/AFBs; ABP1 knockdown leads to an enhanced degradation of AUX/IAA repressors, independently of its effects on endocytosis, through the SCF TIR1/AFB E3 ubiquitin ligase pathway. Combining positive and negative regulation of SCF ubiquitin-dependent pathways might be a common mechanism conferring tight control of hormone-mediated responses

    Self-organization and optical response of silver nanoparticles dispersed in a dielectric matrix

    Get PDF
    Abstract. Double ion-beam sputtering has been used to fabricate nanocermet multilayers consisting of silver nanoparticles sandwiched between Si 3 N 4 dielectric layers. The organization of the nanoparticles has been studied in detail by quantitative analysis of transmission electronic microscopy and atomic force microscopy images. Our results show that the nanoparticles deposited on a plane surface present an isotropic macroscopic in-plane organization while their vertical arrangement displays a topology-induced self-organization. The use of faceted alumina substrates with periodic hill-and-valley structures results in the formation of linear chains of silver particles along the valleys. In that case, transmission optical measurements reveal in-plane anisotropy

    Out-of-plane magnetic patterning on austenitic stainless steels using plasma nitriding

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A correlation between the grain orientation and the out-of-plane magnetic properties of nitrogen-enriched polycrystalline austenitic stainless steel surface is performed. Due to the competition between the magnetocrystalline anisotropy, the exchange and dipolar interactions, and the residual stresses induced by nitriding, the resulting effective magnetic easy-axis can lay along unusual directions. It is also demonstrated that, by choosing an appropriate stainless steel texturing, arrays of ferromagnetic structures with out-of-plane magnetization, embedded in a paramagnetic matrix, can be produced by local plasma nitriding through shadow masks

    Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance

    Get PDF
    Background : Tomato fruit ripening is controlled by ethylene and is characterized by a shift in color from green to red, a strong accumulation of lycopene, and a decrease in β-xanthophylls and chlorophylls. The role of other hormones, such as auxin, has been less studied. Auxin is retarding the fruit ripening. In tomato, there is no study of the carotenoid content and related transcript after treatment with auxin. Results : We followed the effects of application of various hormone-like substances to “Mature-Green” fruits. Application of an ethylene precursor (ACC) or of an auxin antagonist (PCIB) to tomato fruits accelerated the color shift, the accumulation of lycopene, α-, β-, and δ-carotenes and the disappearance of β-xanthophylls and chlorophyll b. By contrast, application of auxin (IAA) delayed the color shift, the lycopene accumulation and the decrease of chlorophyll a. Combined application of IAA + ACC led to an intermediate phenotype. The levels of transcripts coding for carotenoid biosynthesis enzymes, for the ripening regulator Rin, for chlorophyllase, and the levels of ethylene and abscisic acid (ABA) were monitored in the treated fruits. Correlation network analyses suggest that ABA, may also be a key regulator of several responses to auxin and ethylene treatments. Conclusions : The results suggest that IAA retards tomato ripening by affecting a set of (i) key regulators, such as Rin, ethylene and ABA, and (ii) key effectors, such as genes for lycopene and β-xanthophyll biosynthesis and for chlorophyll degradation

    Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening

    Get PDF
    Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter

    The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth

    Get PDF
    Background In plants, the phytohormone auxin is a crucial regulator sustaining growth and development. At the cellular level, auxin is interpreted differentially in a tissue- and dose-dependent manner. Mechanisms of auxin signalling are partially unknown and the contribution of the AUXIN BINDING PROTEIN 1 (ABP1) as an auxin receptor is still a matter of debate. Methodology/Principal Findings Here we took advantage of the present knowledge of the root biological system to demonstrate that ABP1 is required for auxin response. The use of conditional ABP1 defective plants reveals that the protein is essential for maintenance of the root meristem and acts at least on the D-type CYCLIN/RETINOBLASTOMA pathway to control entry into the cell cycle. ABP1 affects PLETHORA gradients and confers auxin sensitivity to root cells thus defining the competence of the cells to be maintained within the meristem or to elongate. ABP1 is also implicated in the regulation of gene expression in response to auxin. Conclusions/Significance Our data support that ABP1 is a key regulator for root growth and is required for auxin-mediated responses. Differential effects of ABP1 on various auxin responses support a model in which ABP1 is the major regulator for auxin action on the cell cycle and regulates auxin-mediated gene expression and cell elongation in addition to the already well known TIR1-mediated ubiquitination pathway

    Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    Get PDF
    BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV

    Model-selection-based approach for calculating cellular multiplicity of infection during virus colonization of multi-cellular hosts

    Get PDF
    The cellular multiplicity of infection (MOI) is a key parameter for describing the interactions between virions and cells, predicting the dynamics of mixed-genotype infections, and understanding virus evolution. Two recent studies have reported in vivo MOI estimates for Tobacco mosaic virus (TMV) and Cauliflower mosaic virus (CaMV), using sophisticated approaches to measure the distribution of two virus variants over host cells. Although the experimental approaches were similar, the studies employed different definitions of MOI and estimation methods. Here, new model-selection-based methods for calculating MOI were developed. Seven alternative models for predicting MOI were formulated that incorporate an increasing number of parameters. For both datasets the best-supported model included spatial segregation of virus variants over time, and to a lesser extent aggregation of virus-infected cells was also implicated. Three methods for MOI estimation were then compared: the two previously reported methods and the best-supported model. For CaMV data, all three methods gave comparable results. For TMV data, the previously reported methods both predicted low MOI values (range: 1.04-1.23) over time, whereas the best-supported model predicted a wider range of MOI values (range: 1.01-2.10) and an increase in MOI over time. Model selection can therefore identify suitable alternative MOI models and suggest key mechanisms affecting the frequency of coinfected cells. For the TMV data, this leads to appreciable differences in estimated MOI values.This work was supported by grant BFU2012-30805 (SFE) and by 'Juan de la Cierva' postdoctoral contract JCI-2011-10379 (MPZ) from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Zwart, MP.; Tromas ., N.; Elena Fito, SF. (2013). Model-selection-based approach for calculating cellular multiplicity of infection during virus colonization of multi-cellular hosts. PLoS ONE. 8:64657-64657. https://doi.org/10.1371/journal.pone.0064657S64657646578Froissart, R., Wilke, C. O., Montville, R., Remold, S. K., Chao, L., & Turner, P. E. (2004). Co-infection Weakens Selection Against Epistatic Mutations in RNA Viruses. Genetics, 168(1), 9-19. doi:10.1534/genetics.104.030205Miyashita, S., & Kishino, H. (2009). Estimation of the Size of Genetic Bottlenecks in Cell-to-Cell Movement of Soil-Borne Wheat Mosaic Virus and the Possible Role of the Bottlenecks in Speeding Up Selection of Variations in trans-Acting Genes or Elements. Journal of Virology, 84(4), 1828-1837. doi:10.1128/jvi.01890-09Taylor, D. R., Zeyl, C., & Cooke, E. (2002). Conflicting levels of selection in the accumulation of mitochondrial defects inSaccharomycescerevisiae. Proceedings of the National Academy of Sciences, 99(6), 3690-3694. doi:10.1073/pnas.072660299Turner, P. E., & Chao, L. (1999). Prisoner’s dilemma in an RNA virus. Nature, 398(6726), 441-443. doi:10.1038/18913Turner, P. E., & Chao, L. (2003). Escape from Prisoner’s Dilemma in RNA Phage Φ6. The American Naturalist, 161(3), 497-505. doi:10.1086/367880Zwart, M. P., Erro, E., van Oers, M. M., de Visser, J. A. G. M., & Vlak, J. M. (2008). Low multiplicity of infection in vivo results in purifying selection against baculovirus deletion mutants. Journal of General Virology, 89(5), 1220-1224. doi:10.1099/vir.0.83645-0Godfray, H. C. J., O’reilly, D. R., & Briggs, C. J. (1997). A model of Nucleopolyhedrovirus (NPV) population genetics applied to co–occlusion and the spread of the few Polyhedra (FP) phenotype. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1380), 315-322. doi:10.1098/rspb.1997.0045Bull, J. C., Godfray, H. C. J., & O’Reilly, D. R. (2001). Persistence of an Occlusion-Negative Recombinant Nucleopolyhedrovirus in Trichoplusia ni Indicates High Multiplicity of Cellular Infection. Applied and Environmental Microbiology, 67(11), 5204-5209. doi:10.1128/aem.67.11.5204-5209.2001Gonzalez-Jara, P., Fraile, A., Canto, T., & Garcia-Arenal, F. (2009). The Multiplicity of Infection of a Plant Virus Varies during Colonization of Its Eukaryotic Host. Journal of Virology, 83(15), 7487-7494. doi:10.1128/jvi.00636-09Gutiérrez, S., Yvon, M., Thébaud, G., Monsion, B., Michalakis, Y., & Blanc, S. (2010). Dynamics of the Multiplicity of Cellular Infection in a Plant Virus. PLoS Pathogens, 6(9), e1001113. doi:10.1371/journal.ppat.1001113Morra, M. R., & Petty, I. T. D. (2000). Tissue Specificity of Geminivirus Infection Is Genetically Determined. The Plant Cell, 12(11), 2259-2270. doi:10.1105/tpc.12.11.2259Silva, M. S., Goldbach, R. W., van Lent, J. W. M., & Wellink, J. (2002). Phloem loading and unloading of Cowpea mosaic virus in Vigna unguiculata. Journal of General Virology, 83(6), 1493-1504. doi:10.1099/0022-1317-83-6-1493Sokal RR, Rohlf FJ (1995) Biometry, 3rd edition. New York: W.H. Freeman and Co. 887 p.Zwart, M. P., Hemerik, L., Cory, J. S., de Visser, J. A. G. M., Bianchi, F. J. J. A., Van Oers, M. M., … Van der Werf, W. (2009). An experimental test of the independent action hypothesis in virus–insect pathosystems. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2233-2242. doi:10.1098/rspb.2009.0064Dietrich, C. (2003). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. Journal of General Virology, 84(10), 2871-2876. doi:10.1099/vir.0.19245-0Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2011). One Is Enough: In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus. PLoS Pathogens, 7(7), e1002122. doi:10.1371/journal.ppat.1002122Lafforgue, G., Tromas, N., Elena, S. F., & Zwart, M. P. (2012). Dynamics of the Establishment of Systemic Potyvirus Infection: Independent yet Cumulative Action of Primary Infection Sites. Journal of Virology, 86(23), 12912-12922. doi:10.1128/jvi.02207-12Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208Van der Werf, W., Hemerik, L., Vlak, J. M., & Zwart, M. P. (2011). Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections. PLoS Computational Biology, 7(6), e1002097. doi:10.1371/journal.pcbi.1002097Barlow, N. D. (1991). A Spatially Aggregated Disease/Host Model for Bovine Tb in New Zealand Possum Populations. The Journal of Applied Ecology, 28(3), 777. doi:10.2307/2404207Barlow, N. D. (2000). Non-linear transmission and simple models for bovine tuberculosis. Journal of Animal Ecology, 69(4), 703-713. doi:10.1046/j.1365-2656.2000.00428.xR Core Team (2012) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Olkin I, Gleser LJ, Derman C. (1994) Probability Models and Applications, 2nd ed. New York: Macmillan. 575 p
    corecore