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Carotenoid accumulation during tomato fruit
ripening is modulated by the auxin-ethylene
balance
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Jean-Paul Roustan1,2, Mondher Bouzayen1,2, Giovanni Giuliano3 and Christian Chervin1,2*

Abstract

Background: Tomato fruit ripening is controlled by ethylene and is characterized by a shift in color from green to
red, a strong accumulation of lycopene, and a decrease in β-xanthophylls and chlorophylls. The role of other hormones,
such as auxin, has been less studied. Auxin is retarding the fruit ripening. In tomato, there is no study of the carotenoid
content and related transcript after treatment with auxin.

Results: We followed the effects of application of various hormone-like substances to “Mature-Green” fruits. Application
of an ethylene precursor (ACC) or of an auxin antagonist (PCIB) to tomato fruits accelerated the color shift, the
accumulation of lycopene, α-, β-, and δ-carotenes and the disappearance of β-xanthophylls and chlorophyll b. By
contrast, application of auxin (IAA) delayed the color shift, the lycopene accumulation and the decrease of chlorophyll
a. Combined application of IAA + ACC led to an intermediate phenotype. The levels of transcripts coding for carotenoid
biosynthesis enzymes, for the ripening regulator Rin, for chlorophyllase, and the levels of ethylene and abscisic acid
(ABA) were monitored in the treated fruits. Correlation network analyses suggest that ABA, may also be a key regulator
of several responses to auxin and ethylene treatments.

Conclusions: The results suggest that IAA retards tomato ripening by affecting a set of (i) key regulators, such as Rin,
ethylene and ABA, and (ii) key effectors, such as genes for lycopene and β-xanthophyll biosynthesis and for chlorophyll
degradation.
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Background

Auxin and ethylene are hormones known to impact

plant development, often with antagonistic roles. Auxin

exerts pleiotropic effects, on the development of roots,

shoots, flowers and fruits [1]. Ethylene is one of the

plant hormones regulating the ripening of fruits, the

opening of flowers, and the abscission of leaves. Tomato

is a model plant for the study of climacteric fruit devel-

opment, which is promoted by ethylene [2]. Observa-

tions of tomato fruits and some non-climacteric fruits,

like grape berry and strawberry, have suggested that rip-

ening is also regulated by auxin, since they can delay rip-

ening and regulate gene expression [3-6]. However, the

impact of auxin on tomato ripening has not been exten-

sively studied, as previous works using exogenous auxin

[3,6] do not study carotenoid accumulation and related

gene expression. Moreover in the plant kingdom, the

crosstalk between auxin and ethylene is not yet deci-

phered [7].

Color change from green to red is a very important in-

dicator of tomato ripening and can easily be measured

by chromametry [8]. This change is associated with the

degradation of chlorophylls and the shift of the caroten-

oid composition from leaf-like xanthophylls (mainly lu-

tein and neoxanthin) to carotenes (mainly phytoene,

lycopene and β-carotene) as described by Fraser et al.
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[9]. In the fruit tissues, the degradation of chlorophylls is

slow, while the accumulation of red carotenoids is rapid

[10] when checked by time lapse imaging. The caroten-

oid biosynthetic pathway in tomato is well described

[11,12] and is detailed on Figure 1. The first committed

step is the condensation of two molecules of geranylger-

anyl diphosphate (GGPP) to form the colorless carotene

15-cis-phytoene, a reaction catalyzed by phytoene

synthases (PSY); 15-cis-phytoene is then desaturated and

isomerized to all-trans-lycopene through the action of

two desaturases and two isomerases: phytoene desatur-

ase (PDS), ζ-carotene desaturase (ZDS), prolycopene

isomerase (CRTISO) and ζ-carotene isomerase (ZISO).

The formation of δ-carotene and γ-carotene from

lycopene are catalyzed by lycopene ε-cyclase (ε-LCY)

and β-cyclases (β-LCY and CYC-β), and then the or-

ange α - carotene and β-carotene are synthetized by β-

cyclases. Finally, these carotenes are transformed into

lutein and zeaxanthin by heme and non-heme β-carotene

hydroxylases (CYP97 and CRTR-b). Zeaxanthin is con-

verted to violaxanthin by the action of zeaxanthin epoxi-

dase (ZEP) and further to neoxanthin by the action of the

NXD and ABA4 proteins. These two xanthophylls are

cleaved by 9-cis-epoxycarotenoid dioxygenase (NCED), a

key enzyme in the biosynthesis of ABA [13].

For the purpose of this article, the pathway will be di-

vided into two parts, upstream of lycopene and down-

stream of lycopene (Figure 1). In the upstream part,

the key rate-limiting steps are catalyzed by PSY1, PDS,

ZDS, ZISO and CRTISO [9,14,15]. The expression

of Psy1, Ziso, Crtiso is directly regulated by the ripen-

ing inhibitor (RIN) protein, which is a member of the

MADS-box family of transcription factors [16,17]. In

the downstream part, lycopene cyclases (ε-LCY, β-

LCY/CYC-β) are also key enzymes, catalyzing the

transformation of lycopene to δ- and β- carotene

[18-21].

To study the role of cross-talk between auxin and ethylene

in the accumulation of carotenoid pigments in tomato fruits,

we treated mature green fruits with the auxin indole acetic

acid (IAA) and the ethylene precursor aminocyclopropane

carboxylic acid (ACC), alone or in combination, and also

with p-chlorophenoxy isobutyric acid (PCIB). The latter

compound is an antagonist of auxin action, although its

mechanism of action is not well characterized [22]. The ef-

fects of these treatments on color change, pigment content

and on the levels of transcripts involved in carotenoid bio-

synthesis were studied.

Results and Discussion

Contrasting effects of ethylene and auxin on tomato fruit

color

The hormonal treatments induced significant color changes

within 96 hours (Figure 2). Treatment with ACC acceler-

ated significantly the transition from green to orange/red

compared to controls. On the contrary, treatment with IAA

induced a significant delay in the transition from green to

orange/red compared to controls. After 96 h, IAA-treated

fruits began to turn orange and then never became red

(data not shown).

Figure 1 Carotenoid biosynthetic pathway based on a previous study [12]. Names of intermediate compounds are in black and names of enzymes

are in red. IPP = isopentenyl diphosphate, GGPS = GGPP synthase, GGPP = geranyl-geranyl pyrophosphate, PSY = phytoene synthase, PDS = phytoene
desaturase, ZISO = zeta-carotene isomerase, ZDS = zeta-carotene desaturase, CRTISO = carotenoid isomerase, ε-LCY = lycopene ε-cyclase, β-LCY = lycopene

β-cyclase, CRTR-β = β-carotene hydroxylase, ZEP = zeaxanthin epoxydase, NXD = neoxanthin synthase, CHL = chlorophyllases, ABA = abscisic acid.



In fruits treated with a combination of ACC and IAA,

color evolution was slower than in controls, but faster

than the fruits treated by IAA alone, indicating that IAA

treatment is epistatic over ACC treatment. In the pres-

ence of the auxin antagonist PCIB, fruits turned red fas-

ter than control ones and the color change kinetics were

very similar to those treated with ACC (Figure 2A).

These results confirmed previous studies showing that

IAA slows down ripening of tomato fruits [2,6], and that

ACC accelerates it [2].

Effects of hormonal treatments on carotenoid, chlorophyll

and ABA accumulation

To further investigate the influence of hormonal treat-

ments on fruit pigment composition, fruit extracts were

analyzed. At 96 hours, the main carotenoids in control

fruits were lutein and β-carotene (Figure 3). Large

amounts of chlorophylls a and b were observed, together

with trace amounts of lycopene, violaxanthin, neoxanthin,

luteoxanthin, ζ-, δ- and α-carotene. The upstream com-

pounds phytoene and phytofluene were not detectable.

This composition is typical of a ripening stage between

the “Breaker” and “Orange” stages of ripening [41].

The ACC and PCIB treatments induced large changes

in carotenoid composition at 96 hours (Figure 3). Lyco-

pene was greatly induced, becoming a major pigment,

together with β-carotene which was also induced and

lutein which was unaffected. The upstream compounds

phytoene, phytofluene and ζ-carotene and the down-

stream compounds δ- and α-carotene were also induced,

while the β-xanthophylls, neoxanthin and violaxanthin

were reduced.

The IAA treatment reduced significantly lycopene ac-

cumulation compared to controls while it did not affect

α-, β- or δ-carotene accumulation. It also led to higher

levels of neoxanthin, violaxanthin and chlorophyll a than

in the controls (Figure 3).

The 9-cis forms of neoxanthin and violaxanthin are

the precursors of abscisic acid (ABA) [23,24], a phyto-

hormone known to control ripening of many fruits, in-

cluding tomato, in which it triggers ethylene biosynthesis

and thus accelerates ripening [25]. ABA levels were de-

creased by the ACC and PCIB treatments and increased

by the IAA treatment (Figure 4), mimicking the evolution

of neoxanthin/violaxanthin, thus suggesting that the accu-

mulation of these compounds might be directly correlated.

This observation is consistent with the idea that in the to-

mato fruit, levels of neoxanthin and violaxanthin are rate-

limiting for ABA accumulation [26]. Finally, the ACC and

PCIB treatments led to an increased degradation of

chlorophyll b (Figure 3).

Our results detail the auxin effects on carotenoid accu-

mulation, thus completing preliminary observations that

were not detailing this aspect [6]. Our results also detail

carotenoid changes induced by ACC, following previous

studies showing that ethylene treatments accelerated

chlorophyll degradation, the appearance of orange color

[10,27] and the accumulation of lycopene [28]. It is notice-

able that PCIB, which acts as an auxin antagonist, induced

the same effects as ACC.

Effects of hormonal treatments on gene expression

In order to investigate if the above hormone-induced

phenotypes were controlled at least partially at the gene

expression level, we determined the levels of all tran-

scripts involved in carotenoid biosynthesis by quantita-

tive Real Time PCR (qPCR) at two different times after

the hormonal treatments (Figure 5).

As observed in Figure 5A, IAA treatment resulted in

lower transcript levels for most of the genes upstream of

lycopene (Psy1, Psy3, Pds, Ziso and Crtiso). With the ex-

ception of Psy3 which has been reported to be mainly

expressed in roots, all these genes are rate-limiting for

lycopene accumulation [15]. Thus, these changes in

transcript levels match well the slower color change and

the decreased accumulation of lycopene after treatment

with IAA (Figures 2 and 3). Regarding the downstream

part of the pathway (Figure 5B), the transcript levels of

β-Lcy1 and Crtr-β1 genes were induced by IAA treat-

ment, concomitant with the higher amounts of violax-

anthin and neoxanthin, while Aba4 showed a biphasic

Figure 2 A) Changes of tomato color as a function of time after
hormonal treatments. IAA: indole acetic acid, ACC: aminocyclopropane

carboxylic acid (ethylene precursor), PCIB: p-chlorophenoxy isobutyric
acid (auxin antagonist). The color bar next to the Y axis gives an

indication of the relation between Hue angle and fruit color, but it is
not the exact color of the fruit on the CIELab scale. n = 6 biological
replicates, LSD bars calculated at 0.05 level. B) Pictures of tomatoes 96

h after hormonal treatments.



Figure 3 Carotenoid [A] and chlorophyll [B] contents 96 h after hormonal treatments. Abbreviations are as in Figure 2. n = 3 biological replicates,

error bars are standard errors. An asterisc (*) shows a significant difference at 0.05 level using t-test between control and the corresponding treatment.

Figure 4 Variations of free ABA levels and ABA glucoside 96 h after hormonal treatments. Abbreviations are as in Figure 2. n = 5 biological replicates,

error bars are standard errors. Asteriscs, * or ** show significant differences at the 0.05 or 0.01 levels compared to controls, respectively (t-test).



response (induction at 24 h and repression at 96 h) and

Nced1 a repression at 96 h. Together, these observations

indicate that the ABA increase after IAA treatment is a

fast response, probably due to an increase in the synthe-

sis of its precursors violaxanthin and neoxanthin, medi-

ated by an activation of the β-Lcy1, Crtr-β1 and Aba4

Figure 5 Modulation of transcript accumulation related to carotenoid pathway, A) upstream of lycopene, B) downstream of lycopene, 24 h or 96

h after hormonal treatments (see abbreviations in legend of Figure 2). n = 3 biological replicates, bars = std errors. Expression relative to controls
(set at 0). An asterisc (*) shows significant differences at the 0.05 level with controls (t-test).



genes. The repression of Aba4 and Nced1 at 96 h may

be due to a negative feedback regulation exerted by the

increased ABA levels on these genes. ABA is known to

increase in tomatoes prior to the ethylene peak [25].

ACC treatment led to higher levels of Psy1 and Psy2

transcripts, and also, to a lesser extent, of the Ziso, Pds,

Zds and Crtiso ones (Figure 5A). All these genes encode

rate-limiting steps for lycopene biosynthesis [15] and thus

the observed changes in gene expression are in agreement

with the faster color change and accelerated lycopene ac-

cumulation (Figures 2 and 3). Moreover, ACC treatment

decreased β-Lcy1 transcript levels (Figure 5B) with unex-

pected increase of α-, β- and δ- carotenes, indicating that

the β-Lcy1 repression was possibly offset by the unaltered

levels of the other cyclase transcripts. ACC also repressed

Crtr-β2 expression that was not offset by the unaltered

Crtr-β1 levels, reducing the further conversion of carotene

compounds into β-xanthophylls. This was confirmed by

the reduced neoxanthin and ABA levels after ACC treat-

ment (Figures 3 and 4), in spite of an induction of Aba4. It

is also worth noticing that IAA and ACC affected the ex-

pression of two different hydroxylase paralogs, Crtr-βi be-

ing stimulated by IAA and Crtr-β2 being inhibited by

ACC, respectively. Overall, these data explain the faster

accumulation of lycopene and β-carotene, and also the

lower accumulation of β-xanthophylls and ABA in ACC

treated fruits than in controls.

Similar changes in transcript levels occurred in PCIB-

treated fruits (Figure 5), which showed an additional re-

pression of β-Lcy2 and an induction of Zep, as well as a

very similar carotenoid profile (Figure 3) to the ACC-

treated samples. There was no significant effect of any

treatment on Ggps expression (Figure 5A and Additional

file 1: Figure S1).

The combined IAA + ACC treatment resulted in a vis-

ual and carotenoid phenotype intermediate between

those of each treatment alone and more similar to that

of IAA alone, with the exception of violaxanthin, neox-

anthin and ABA induction, which was less pronounced

than in IAA alone (Figures 2, 3 and 4). At the transcrip-

tional level, IAA + ACC was less inhibitory of upstream

transcripts than IAA alone. Although the significance of

these observations awaits clarification, it confirms the

antagonistic effects of the two hormones at the bio-

chemical and transcriptional levels.

Chlorophyll degradation in Citrus fruits is an active

process mediated by chlorophyllase (Chlase) [29]. In

tomato, chlorophyll degradation was affected by hormo-

nal treatments, with IAA treatment retarding chloro-

phyll a degradation, both alone and in combination

with ACC treatment, while chlorophyll b degradation

was accelerated by both ACC and PCIB treatments

(Figure 3). We measured the levels of the three Chlase

transcripts identified in the tomato genome. Repression of

all three transcripts was obvious 96 h after the IAA

treatment (Figure 6). This correlates well with the

higher levels of chlorophyll a and to a lesser extent of

chlorophyll b, in both treatments with IAA (Figure 3).

However, the marked decrease of chlorophyll b in the

ACC and PCIB treatments does not correlate with

increased Chlase transcript accumulation (Figure 6).

This suggests that, in contrast to Citrus [29], tomato

Chlase gene expression is not under ethylene control

and that, as observed in Citrus [30], posttranscrip-

tional mechanisms may also regulate Chlase activity in

tomato.

Figure 6 Modulation of chlorophyllase transcripts, 96 h after hormonal
treatments (see abbreviations in legend of Figure 2). n = 3 biological

replicates. Expression relative to controls (set at 0). Error bars are
standard errors. An asterisc (*) shows significant differences the

0.05 level with controls (t-test).



Effects of hormonal treatments on the Rin transcript and

on transcripts of the carotenoid/ABA pathway

Several genes in the carotenoid pathway are regulated by

the Rin transcription factor [16,17]: Psy1, Ziso and Crtiso

display direct positive regulation, Zds indirect positive

regulation, and ε-Lcy and β-Lcy2 indirect negative regula-

tion. Analyses carried out by qPCR (Figure 7A) showed

that the transcript levels of Rin were stimulated by ACC

and inhibited by IAA, even if the sole significant difference

was noticed for ACC 96 h. The qPCR profiles of Rin

(Figure 7A) and Psy1 (Figure 5A) seem to match quite

well. Indeed, in keeping with the findings of Fujisawa et al.

[17], high positive correlations (ρ > 0.60, and in some

cases ρ > 0.80) were observed between transcript levels of

Rin and Psy1 at both 24 h and 96 h, Ziso and Crtiso at 96

h, and ZDS at 24 h (Figure 7B).

In contrast, ε-Lcy did not show high correlations with

Rin neither at 24 h nor at 96 h, while β-Lcy2 showed

strong positive correlations at both time points. This

contrasts with the findings of Fujisawa et al. [17] and

suggests that lycopene cyclase transcripts are subject to

additional layers of regulation. Strong positive correla-

tions with Rin were identified for Pds and Zep at 24 h

and for ABA4 at 96 h. The latter two genes mediate the

biosynthesis of the ABA precursors, violaxanthin and

neoxanthin (Figure 1), and thus their positive correla-

tions with Rin may be indicative of the fact that Rin

activates two hormonal cascades: one acting through

ethylene [16], and one acting through ABA. Finally, Ggps4

showed a negative correlation with Rin levels at 96 h. This

gene is unrelated to fruit carotenoid biosynthesis and may

control the biosynthesis of other isoprenoid compounds

(Falcone et al., unpublished).

Effects of hormonal treatments on fruit ethylene production

Ethylene is assumed to be a “master switch” controlling

tomato fruit ripening. Therefore, it is interesting to verify

if the hormonal treatments described above alter ethyl-

ene production. We measured ethylene production in

hormone-treated fruits at various times after treatments

(Figure 8). As expected, ACC treatment accelerated the

appearance of the climacteric ethylene peak by about 2

days whereas IAA treatment repressed the ethylene pro-

duction, and this repression was only partially reversed by

combined IAA + ACC treatments. PCIB treatment had lit-

tle effect up to 100 hours after treatment, while it slightly

decreased ethylene production around 200 hours. So it

seems that PCIB enhancement of carotenoid accumula-

tion in comparison to controls (Figure 2) is not mediated

by a variation in ethylene production. The IAA decrease

of carotenoid accumulation in comparison to controls

could be partially mediated by the repression of ethylene

production.

Factorial and network analyses show associations

between hormonal treatments and carotenoid levels

Factorial analyses are used to determine and describe

the dependencies within sets of variables. In this study

the treatments, and many observed variations, in this

study the transcript levels (Figure 9A) or the carotenoid

levels (Figure 9B). These factorial correspondence ana-

lyses clearly show strong positive correlation between

Figure 7 A) Modulation of the Rin transcript 24 h or 96 h after various hormonal treatments (see abbreviations in legend of Figure 2). n = 3
biological replicates. Expression relative to controls (set at 0). Error bars are standard errors. B) Correlation coefficients between Rin and other

transcripts shown in Figure 5.



the effects of ACC and PCIB, and their negative correl-

ation to the effects of IAA treatment, whatever the regu-

latory level measured: transcript accumulation or

carotenoid accumulation. It is noticeable that, at the

transcript level, the IAA + ACC treatment is strongly

correlated with the ACC and PCIB ones (Figure 9A),

while at the carotenoid composition level - which

matches the fruit phenotype more closely - it is corre-

lated with the IAA treatment (Figure 9B). This may be

due to the fact that changes in transcript accumulation

occur ahead of those in metabolite accumulation, or to

the fact that some of the latter changes are due to post-

transcriptional events, or to both.

The transcripts correlating with the ripening delay as-

sociated to IAA treatment are lycopene cyclases (ε and

β-Lcy) and, to a lesser extent, carotene hydroxylases

(Crtr-β) (Figure 9A). These results confirm previous

studies [18-21]. All transcripts mediating lycopene bio-

synthesis in tomato fruits: Psy1, Pds, Ziso, Zds, and

Crtiso [15] correlate well with the accelerated ripening

Figure 8 Variations in ethylene production after the hormonal
treatments (see abbreviations in legend of Figure 2). n = 3 biological
replicates, error bars are LSD at the 0.05 level.

Figure 9 Factorial correspondence analyses with data 96 h after hormonal treatments, A) transcript accumulation and B) carotenoid and metabolite

content. Abbreviations are as in Figures 1 and 2.



induced by ACC or PCIB. Also Psy3, which is much less

expressed and is non-essential for lycopene biosynthesis,

shows a position opposed to IAA treatment (Figure 9A)

as it was strongly repressed by IAA at 96 h (Figure 5A).

Same case for the position of Chlase transcripts in

Figure 9A which is mainly due to the strong inhibition

by IAA, rather than to a stimulation by ACC. Regarding

carotenoids, the accumulation of upstream intermediates

and lycopene and, to a lesser extent, of α-, β-, and δ-

carotene is correlated directly with ACC and PCIB

treatments. Inversely IAA and IAA + ACC treatments

correlate well with chlorophylls and xanthophylls, (es-

pecially violaxanthin and neoxanthin) and their product

ABA (Figure 9B). This is consistent with the fact that

ripening is associated with the accumulation of cyclic

carotenes and with the decrease of chlorophylls and

xanthophylls.

We also applied correlation network analysis based on

transcript-metabolite data integration (Figure 10). The

time spent after treatments increased the strength in the

network [31], and at 96 h the network shows four nodes

with strong correlation values (|ρ| > 0.60) (Additional

file 2: Table S2): ABA, its metabolic precursors violax-

anthin and neoxanthin and Nxd, a gene essential for

neoxanthin biosynthesis [33]. All four nodes exhibited

a prevalence of negative correlations with the other

ripening-specific variables in the network.

Conclusions

Our results suggest that ACC treatment induces lyco-

pene and α-, β- and δ-carotene accumulation by indu-

cing Psy1, and repressing β-Lcy1 and Crtr-β2. These

transcriptional responses are fast, reaching a peak at 24 h.

On the other hand, treatment with IAA represses sev-

eral upstream carotenoid transcripts (Psy, Ziso, Pds,

Crtiso) as well as Chlases 1-3 and promotes the accumu-

lation of β-Lcy1 and Crtr-β1 transcripts, leading to

higher levels of chlorophyll a, neoxanthin, violaxanthin

and ABA. These responses show a temporal curve: Ziso

and some downstream transcripts (Crtr-β1 and ABA4)

respond already at 24 h, while most other transcripts

(Psy1 to β-Lcy1) respond later, at 96 h. This response

could be due to the fact that downstream transcripts re-

spond directly to auxin, while upstream transcripts re-

spond to the repression of ethylene production induced

by IAA treatment (Figure 8). Treatment with PCIB (an

auxin antagonist) led to responses similar to those ob-

tained after ACC treatment, confirming the antagonism

Figure 10 Correlation networks at 24 h and 96 h, generated as previously described [31]. In all network diagrams, nodes of different shape represent
genes and metabolites. Direct and inverse corrlations ≥ |0.60| are shown as red and blue edges, respectively. Edge thickness is proportional to the
absolute values of the Pearson correlation coefficient (|ρ|), while node sizes are proportional to node strengths [31] (Additional file 2: Table S2).

n = number of nodes, NS = network strength [31]. Nodes related to carotenoids are shown in red, to chlorophyll in green, to ABA in yellow,
neoxanthin and violaxanthin (ABA precursors) in orange, Rin in grey. The “organic layout” was used for network visualization with Cytoscape 2.6.3

(www.cytoscape.org) [32].



between ethylene and auxin. Interestingly, while IAA

completely repressed ethylene production, PCIB did

not increase it (Figure 8) indicating that endogenous

auxin does not play a major role in regulating ethylene

production during normal ripening. The repression of

ethylene production and the induction of Crtr-β1 by

exogenous IAA supplementation were epistatic over

ACC supplementation when both treatments were

given together, while the final phenotype of the fruits

did not show a clear epistasis of IAA over ACC

supplementation.

Factorial and correlation network analyses allowed the

identification, at 96 h, of transcriptional and metabolite

“hubs” which may represent central regulators; these com-

prised ABA, its carotenoid precursors (violaxanthin and

neoxanthin) and the Nxd gene, leading to neoxanthin bio-

synthesis. Overall, these data suggest a central role for

ABA as a negative intermediate regulator in the perturb-

ation of tomato fruit ripening following auxin and ethyl-

ene treatments.

Methods
Plant materials and growth conditions

Tomato plants (Solanum lycopersicum cv. MicroTom)

were grown under standard greenhouse conditions. The

culture chamber room was set as follows: 14-h day/10-h

night cycle, 25/20°C day/night temperature, 80% relative

humidity, 250 μmol m-2 s-1 light intensity. Tomato

seeds were first sterilized 5 min in sterile water and

sown in Magenta vessels containing 50 ml 50% Murashige

and Skoog (MS) culture medium and 0.8% (w/v) agar,

pH 5.9 [34].

Treatments of tomato fruits

Tomato fruits were harvested at the mature green stage

of development and injected with a buffer solution con-

tained 10 mM MES, pH 5.6, sorbitol (3% w/v) and 100

μM of ACC, or IAA, or IAA + ACC (100 μM each), or

PCIB (all Sigma-Aldrich products). Preliminary tests

were performed with concentrations ranging from 1 μM

to 1 mM, in order to choose the minimal concentration

impacting the ripening kinetics without showing toxic

effects. Buffer injection was performed as described pre-

viously [35]. Briefly, tomato fruits were infiltrated using

a 1 ml syringe with a 0.5 mm needle, inserted 3 to 4 mm

into the fruit tissue through the stylar apex. The infiltra-

tion solution was gently injected into the fruit until the

solution ran off the stylar apex and the hydathodes at

the tip of the sepals. Only completely infiltrated fruits

were used in the experiments. Controls were treated

with buffer only. After the treatment, fruits were incu-

bated in a culture room at 26°C, under 16 h light/8 h

dark cycle with a light intensity of 100 μmol s-1 m-2.

After 24 h and 96 h, fruits pericarp was collected and

frozen at -80°C until further analysis. For each condition,

27 fruits were sampled arising from 9 different plants.

Color and pigment measurement

Surface color was assessed with a Chromameter (CR400,

Konica Minolta), using the D65 illuminant and the L*,

a*, b* space, and the data were processed to obtain Hue

as previously described [8]. In the culture room, the fruit

color was measured after 6 h, 48 h, 96 h and some fruit

were kept up to 8 days for assessing this parameter.

Three measures were taken at the equator of each fruit,

before being averaged. The Hue angle (in degrees) was

calculated according to the following equations: Hue =

tan-1 (b*/a*) if a > 0 and 180 + tan-1 (b*/a*) if a < 0. For

pigment analysis, fruit samples were chosen at 96 h after

treatment with IAA, ACC, IAA + ACC, PCIB and

ground to a fine powder in liquid nitrogen. Pigments

(chlorophylls/carotenoids) were extracted from freeze-

dried tissues and analyzed as described previously [36]

using an Accela U-HPLC system coupled to an Orbitrap

high-resolution mass spectrometer (HRMS) operating in

positive mode-atmospheric pressure chemical ionization

(APCI) (Thermo Fischer Scientific, Waltham, MA).

ABA and ethylene assays

The ABA assays were performed as described previously

[37]. Briefly, 110 mg of frozen tissue, sampled at 96 h

after treatments, were extracted at 4°C for 30 min with

400 μl of H2O with 10% methanol + 1% acetic acid. The

internal standard was [2H6] labelled ABA. The extract

was centrifuged at 13,000 g for 10 min at 4°C. The super-

natant was carefully removed and the pellet re-incubated

for 30 min with 400 μl of methanol-acetic acid mix. Fol-

lowing the centrifugation, the supernatants were pooled.

Extracts were then analysed by LC-MS using an Acquity

UPLC coupled to a XevoQtof (Waters, Massachusetts,

USA). Analysis parameters were described in Jaulneau

et al. [38]. Fruit ethylene production was assayed as

previously described [36]. The fruit ethylene production

was measured after 6 h, 48 h, 96 h and some fruit were

kept up to 8 days in the culture room for assessing this

parameter.

RNA isolation and quantitative PCR (qPCR)

Total fruit RNA was extracted using the PureLink™ Plant

RNA Reagent (Invitrogen) according to the manufac-

turer’s instructions. On fruit sampled at 24 and 96 h,

total RNA was treated by DNase I to remove any gen-

omic DNA contamination. First-strand cDNA was re-

verse transcribed from 2 μg of total RNA using an

Omniscript kit (Qiagen). qPCR analyses were performed

as previously described [39]. The primer sequences are

listed in Additional file 3: Table S1. Relative fold changes

were calculated using SI-actin as housekeeping gene. As



for pigment analyses, three independent RNA isolations

were used for cDNA synthesis. Efficiency of DNAse was

assessed by PCR with actin primers designed on both

size of a zone with an intron, thus giving two bands if

genomic DNA is still present.

Factorial analyses of correspondence, correlation

networks and statistics

We used transcript accumulation relative to controls

under the ∆∆Ct format to get only positive values, and the

carotenoid accumulation levels were calculated relative to

controls. The factorial analyses of correspondence were

calculated with the explore.xla Excel macro developed pre-

viously [40]. Correlation networks were built as previously

described [31]. Networks were visualized as organic lay-

outs with Cytoscape version 2.6.3 (www.cytoscape.org)

[32]. When LSD are presented they were calculated using

Tukey’s HSD.

Additional files

Additional file 1: Figure S1. Modulation of ggps transcript accumulation,
by various hormonal treatments, 24th or 96h after treatment (see
abbreviations in legend of Figure 2), n=3 biological replicates, bars = std
errors. Expression relative to controls (set at 0).

Additional file 2: Table S2. Node strengths (ns) of the network in
Figure 10, calculated as avg(|ρ|) (Diretto et al, 2010).

Additional file 3: Table S1. List of primers used in qPCR experiments.
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