22 research outputs found

    In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors

    Get PDF
    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 \ub5M all-trans Retinoic Acid (ATRA), 5 \ub5M Phenyl Butyrate (PB), and 200 \ub5M diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and \u3b1-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors

    Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions

    Get PDF
    Real-time reverse transcription PCR (RT-qPCR) has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus). We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family) and GAPC2 (GAPDH) was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin), TUB (tubulin) and CtP (cathepsin) were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein), GAPC2 and UPL7 (ubiquitin protein ligase 7) to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress

    Disparate Impact of Butyroyloxymethyl Diethylphosphate (AN-7), a Histone Deacetylase Inhibitor, and Doxorubicin in Mice Bearing a Mammary Tumor

    Get PDF
    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of γH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in γH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in γH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin

    No full text
    Nucleolar stress, characterized by loss of nucleolar integrity, has not been described in the cardiac context. In addition to ribosome biogenesis, nucleoli are critical for control of cell proliferation and stress responses. Our group previously demonstrated induction of the nucleolar protein nucleostemin (NS) in response to cardiac pathological insult. NS interacts with nucleophosmin (NPM), a marker of nucleolar stress with cytoprotective properties. The dynamic behavior of NS and NPM reveal that nucleolar disruption is an early event associated with stress response in cardiac cells. Rapid translocation of NS and NPM to the nucleoplasm and suppression of new preribosomal RNA synthesis occurs in both neonatal rat cardiomyocytes (NRCM) and cardiac progenitor cells (CPC) upon exposure to doxorubicin or actinomycin D. Silencing of NS significantly increases cell death resulting from doxorubicin treatment in CPC, whereas NPM knockdown alone induces cell death. Overexpression of either NS or NPM significantly decreases caspase 8 activity in cultured cardiomyocytes challenged with doxorubicin. The presence of altered nucleolar structures resulting from myocardial infarction in mice supports the model of nucleolar stress as a general response to pathological injury. Collectively, these findings serve as the initial description of myocardial nucleolar stress and establish the postulate that nucleoli acts as sensors of stress, regulating the cellular response to pathological insults
    corecore