785 research outputs found

    EMG Based Body-Machine Interface for Adaptive and Personalized Robotic Training of Persons with Multiple Sclerosis

    Get PDF
    Multiple sclerosis is a complex neurological disease that results in motor impairment associated with muscle weakness and lack of motor coordination. Indeed, previous studies showed that, while activities in isolated arm muscles appeared generally similar to those of unimpaired subjects, shoulder muscle coordination with arm motions was affected by MS and there was a marked co-activation of the biceps and triceps in the extension movements. This inability to activate muscles independently has a significant impact in motor function therefore reducing the co-contraction could improve the overall arm function. In this pilot study, we developed a body-machine interface based on muscle activities with the goal of ‘breaking’ the abnormal triceps-biceps co-activation during planar flexion-extension movements of people with multiple sclerosis during a robot-based task. The task consisted in 2D center-out reaching movements with the assistance of a robotic manipulandum. When the subject was not exhibiting the abnormal triceps-biceps co-activation for three consecutive movements the robot was decreasing the assistance. Subjects trained for up to six 1-hour sessions in three weeks. Results showed that the assistance from the robot decreased within each session for most of the subjects, while the movement became faster and straighter. The comparison between muscle activity before and after the training with this body-machine interface demonstrated that subjects learned how to reduce the tricepsbiceps co-activation

    Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: implications on relation between seismic activation of the Pernicana fault system and volcanic unrest

    Get PDF
    We investigate the displacement induced by the 2–3 April 2010 seismic swarm (the largest event being of Ml 4.3 magnitude) by means of DInSAR data acquired over the volcano by the Cosmo-SkyMed and ALOS radar systems. Satellite observations, combined with leveling data, allowed us to perform a high-resolution modeling inversion capable of fully capturing the deformation pattern and identifying the mechanism responsible for the PFS seismic activation. The inversion results well explain high gradients in the radar line of sight displacements observed along the fault rupture. The slip distribution model indicates that the fault was characterized by a prevailing left-lateral and normal dip–slip motion with no fault dilation and, hence, excludes that the April 2010 seismic swarm is a response to accommodate the stress change induced by magma intrusions, but it is due to the tectonic loading possibly associated with sliding of the eastern flank of the volcano edifice. These results provide a completely different scenario from that derived for the 22 September 2002 M3.7 earthquake along the PFS, where the co-seismic shear-rupture was accompanied by a tensile mechanism associated with a first attempt of magma intrusion that preceded the lateral eruption occurred here a month later. These two opposite cases provide hints into the behavior of the PFS between quiescence and unrest periods at Etna and pose different implications for eruptive activity prediction and volcano hazard assessment. The dense pattern of ground deformation provided by integration of data from short revisiting time satellite missions, together with refined modeling for fault slip distribution, can be exploited at different volcanic sites, where the activity is controlled by volcano-tectonic interaction processes, for a timely evaluation of the impending hazards

    Modeling of the acute toxicity of benzene derivatives by complementary QSAR methods

    Get PDF
    A data set containing acute toxicity values (96-h LC50) of 69 substituted benzenes for fathead minnow (Pimephales promelas) was investigated with two Quantitative Structure- Activity Relationship (QSAR) models, either using or not using molecular descriptors, respectively. Recursive Neural Networks (RNN) derive a QSAR by direct treatment of the molecular structure, described through an appropriate graphical tool (variable-size labeled rooted ordered trees) by defining suitable representation rules. The input trees are encoded by an adaptive process able to learn, by tuning its free parameters, from a given set of structureactivity training examples. Owing to the use of a flexible encoding approach, the model is target invariant and does not need a priori definition of molecular descriptors. The results obtained in this study were analyzed together with those of a model based on molecular descriptors, i.e. a Multiple Linear Regression (MLR) model using CROatian MultiRegression selection of descriptors (CROMRsel). The comparison revealed interesting similarities that could lead to the development of a combined approach, exploiting the complementary characteristics of the two approaches

    Composite MRI measures and short-term disability in patients with clinically isolated syndrome suggestive of MS

    Get PDF
    The use of composite magnetic resonance imaging (MRI) measures has been suggested to better explain disability in patients with multiple sclerosis (MS). However, little is known about the utility of composite scores at the earliest stages of the disease

    The VELISAR initiative for the measurement of ground velocity in italian seismogenic areas

    Get PDF
    VELISAR (Ground VELocity in Italian Seismogenic Areas) is a scientific research initiative aimed at producing a map of the ground deformation over most of the seismogenic areas of Italy, using the space-based technique of multitemporal Synthetic Aperture Radar Interferometry (InSAR). The ground velocities derived from InSAR data will be validated by means of ground based data obtained from GPS, optical leveling, seismological and neotectonic studies. The scope of the project is to produce a high-resolution ground deformation dataset useful to model the seismic cycle of strain accumulation and release at the scale of the single faults. The main objective of VELISAR is to produce maps of ground velocity with the following characteristics: - A ground resolution better than 100 m. - Average uncertainty of LoS velocity measurements smaller than 2 mm/yr . - Temporal coverage of at least 7 years. - Retrieval of East and Up components from ascending and descending LoS. VELISAR will exploit the potential of the long time series (1992-2000) of ERS InSAR data maintained in the ESA archives; over 4000 ERS images will have to be processed to accomplish its objectives. Presently, two InSAR techniques for the measurement of slow ground deformation are used in VELISAR: the Permanent Scatterers (PS) technique developed by the Politecnico of Milano (POLIMI), and the Small Baseline Subset (SBAS) technique, developed by the Institute for Remote Sensing of Environment (IREA-CNR), in Napoli. The PS technique is applied by TRE preferably over areas characterised by diffuse temporal decorrelation due to, for instance, erodible lithologies, agricultural land use and strong vegetation cover. In these areas we expect to obtain good temporal coherence mainly on sparse point scatterers. The SBAS technique is applied by IREA and INGV mostly over areas where limited temporal decorrelation is expected: urban areas, scarcely vegetated areas. The ground resolution at which these data are originally processed is 80 m. An important goal of the VELISAR initiative is to disseminate the information on the InSAR-derived ground velocity measurements, to the scientific community and to the public in general. Such goal is accomplished through a dedicated web site, where the velocity maps of the italian seismogenic areas will be progressively published. We will present the initiative, its scope and objectives, the technical details and the data processing strategies, and some examples of ground velocity maps.PublishedVienna, Austriaope

    Solution Structures of the C-Terminal Domain of Cardiac Troponin C Free and Bound to the N-Terminal Domain of Cardiac Troponin I

    Get PDF
    The N-terminal domain of cardiac troponin I (cTnI) comprising residues 33−80 and lacking the cardiac-specific amino terminus forms a stable binary complex with the C-terminal domain of cardiac troponin C (cTnC) comprising residues 81−161. We have utilized heteronuclear multidimensional NMR to assign the backbone and side-chain resonances of Ca2+-saturated cTnC(81−161) both free and bound to cTnI(33−80). No significant differences were observed between secondary structural elements determined for free and cTnI(33−80)-bound cTnC(81−161). We have determined solution structures of Ca2+-saturated cTnC(81−161) free and bound to cTnI(33−80). While the tertiary structure of cTnC(81−161) is qualitatively similar to that observed free in solution, the binding of cTnI(33−80) results mainly in an opening of the structure and movement of the loop region between helices F and G. Together, these movements provide the binding site for the N-terminal domain of cTnI. The putative binding site for cTnI(33−80) was determined by mapping amide proton and nitrogen chemical shift changes, induced by the binding of cTnI(33−80), onto the C-terminal cTnC structure. The binding interface for cTnI(33−80), as suggested from chemical shift changes, involves predominantly hydrophobic interactions located in the expanded hydrophobic pocket. The largest chemical shift changes were observed in the loop region connecting helices F and G. Inspection of available TnC sequences reveals that these residues are highly conserved, suggesting a common binding motif for the Ca2+/Mg2+-dependent interaction site in the TnC/TnI complex

    A System Dynamics Approach to Understanding the deep Magma Plumbing System Beneath Dominica (Lesser Antilles)

    Get PDF
    To understand the dynamics of magmatic systems, one must first seek to characterize the time-dependent behavior of magma storage and ascent. Herein, we do this through a combination of the Crystal System Approach and careful study of Fe-Mg interdiffusion in orthopyroxene. This allows us to trace the pre-eruptive dynamics of magma plumbing systems, both in space and time. We apply this novel approach on two large silicic eruptions (about 3–5 km3 DRE/eruption) that occurred in the central part of Dominica Island (Lesser Antilles Arc): the eruptions of Layou (∌51 ka) from Morne Diablotins, and Roseau (∌33 ka) from Morne Trois Pitons-Micotrin. For the Roseau eruption, two magmatic environments (MEs) are identified on the basis of orthopyroxene composition, with a dominant reverse-zoning pattern from 50 to 54 to 54–59 mol% enstatite (En), indicating interaction with hotter magma. For the Layou eruption, three MEs are observed as represented by three populations of pyroxenes: En47-51, En51-53 and En53-58. The normal-zoning pathway from En51-53 to En47-51 is significantly registered by crystals, interpreted as convective mixing in a zoned reservoir. The reverse-zoning pathway from En47-51 to En51-53 and also En53-58 is also significantly present, supporting the mixing within the zoned reservoir but also suggesting mixing with a hotter magma, possibly stored in another part of a sub-volcanic mush. The crystal and glass compositions (melt inclusion and matrix glass) from both studied eruptions suggest heating and mixing between different magma pockets located within the mush that were the dominant process for mobilizing eruptible magma. In parallel, we constrain the associated pre-eruptive timescales by modeling the diffusive relaxation of Fe-Mg chemical gradients that originated within the zonation of the same orthopyroxene crystals. Diffusion modeling was considered along the b-axis of 66 zoned orthopyroxene crystals for these two eruptions, at a magmatic temperature of 850 ± 25°C. In light of these results, we propose that the Layou and the Roseau magma reservoirs were rejuvenated and heated by ∌25–50°C about 10 years prior to eruption by the injection of an underplating, hotter magma, creating the observed dominant reverse-zoning patterns of the erupted orthopyroxenes. We thus have evidence that silicic mush can be re-mobilized over timescales of decades prior to eruption, as previously suggested for Santorini and Taupo volcanoes
    • 

    corecore