927 research outputs found
Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks
The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances
Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks
The fault diagnosis of wind turbine systems has been proven to be a challenging task and motivates the research activities carried out through this work. Therefore, this paper deals with the fault diagnosis of wind turbines, and it proposes viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator involves a data-driven approach, as it represents an effective tool for coping with a poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed solution relies on neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen network architecture belongs to the nonlinear autoregressive with exogenous input topology, as it can represent a dynamic evolution of the system along time. The developed fault diagnosis scheme is tested by means of a high-fidelity benchmark model, that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are compared with those of other control strategies, coming from the related literature. Moreover, a Monte Carlo analysis validates the robustness of the proposed solutions against the typical parameter uncertainties and disturbances
Active Fault Tolerant Control of a Wind Farm System
In order to enhance the 'sustainability’ of offshore wind farms, thus skipping unplanned maintenance operations and costs, that can be important for offshore systems, the earlier management of faults represents the key point. Therefore, this work studies the development of an adaptive sustainable control scheme with application to a wind farm benchmark consisting of nine wind turbine systems. They are described via their nonlinear models, as well as the wind and wake effects among the wind turbines of the wind park. The fault tolerant control strategy uses the recursive estimation of the faults provided by nonlinear estimators designed via a nonlinear differential algebraic tool. This aspect of the study, together with the more straightforward solution based on a data-driven scheme, is the key issue when on-line applications are proposed for a viable implementation of the proposed solutions
Hardware-In-The-Loop Assessment of a Fault Tolerant Fuzzy Control Scheme for an Offshore Wind Farm Simulator
To enhance both the safety and the efficiency of offshore wind park systems, faults must be accommodated in their earlier occurrence, in order to avoid costly unplanned maintenance. Therefore, this paper aims at implementing a fault tolerant control strategy by means of a data-driven approach relying on fuzzy logic. In particular, fuzzy modelling is considered here as it enables to approximate unknown nonlinear relations, while managing uncertain measurements and disturbance. On the other hand, the model of the fuzzy controller is directly estimated from the input-output signals acquired from the wind farm system, with fault tolerant capabilities. In general, the use of purely nonlinear relations and analytic methods would require more complex design tools. The design is therefore enhanced by the use of fuzzy model prototypes obtained via a data-driven approach, thus representing the key point if real- time solutions have to implement the proposed fault tolerant control strategy. Finally, a high- fidelity simulator relying on a hardware-in-the-loop tool is exploited to verify and validate the reliability and robustness characteristics of the developed methodology also for on-line and more realistic implementations
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
The Q^2-Dependence of Nuclear Transparency for Exclusive Production
Exclusive coherent and incoherent electroproduction of the meson
from H and N targets has been studied at the HERMES experiment as a
function of coherence length (), corresponding to the lifetime of hadronic
fluctuations of the virtual photon, and squared four-momentum of the virtual
photon (). The ratio of N to H cross sections per nucleon,
known as nuclear transparency, was found to increase (decrease) with increasing
coherence length for coherent (incoherent) electroproduction. For
fixed coherence length, a rise of nuclear transparency with is observed
for both coherent and incoherent production, which is in agreement
with theoretical calculations of color transparency.Comment: 5 pages, 4 figure
Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry
Spin-dependent lepton-nucleon scattering data have been used to investigate
the validity of the concept of quark-hadron duality for the spin asymmetry
. Longitudinally polarised positrons were scattered off a longitudinally
polarised hydrogen target for values of between 1.2 and 12 GeV and
values of between 1 and 4 GeV. The average double-spin asymmetry in
the nucleon resonance region is found to agree with that measured in
deep-inelastic scattering at the same values of the Bjorken scaling variable
. This finding implies that the description of in terms of quark
degrees of freedom is valid also in the nucleon resonance region for values of
above 1.6 GeV.Comment: 5 pages, 1 eps figure, table added, new references added, in print in
Phys. Rev. Let
Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering
Polarized deep--inelastic scattering data on longitudinally polarized
hydrogen and deuterium targets have been used to determine double spin
asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for
the production of positive and negative pions from hydrogen were obtained in a
re--analysis of previously published data. Inclusive and semi--inclusive
asymmetries for the production of negative and positive pions and kaons were
measured on a polarized deuterium target. The separate helicity densities for
the up and down quarks and the anti--up, anti--down, and strange sea quarks
were computed from these asymmetries in a ``leading order'' QCD analysis. The
polarization of the up--quark is positive and that of the down--quark is
negative. All extracted sea quark polarizations are consistent with zero, and
the light quark sea helicity densities are flavor symmetric within the
experimental uncertainties. First and second moments of the extracted quark
helicity densities in the measured range are consistent with fits of inclusive
data
Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays
We present measurements of the branching fractions for the three-body decays
B0 -> D(*)-/+ K0 pi^+/-B0 -> D(*)-/+ K*+/- using
a sample of approximately 88 million BBbar pairs collected by the BABAR
detector at the PEP-II asymmetric energy storage ring.
We measure:
B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4}
B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4}
B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4}
From these measurements we determine the fractions of resonant events to be :
f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) =
0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let
The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering
The flavor asymmetry of the light quark sea of the nucleon is determined in
the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time
from semi-inclusive deep-inelastic scattering. The quantity
(dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields
of positive and negative pions from unpolarized hydrogen and deuterium targets.
The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing
an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small
change in extraction of dbar-ubar and comparison with a high q2
parameterizatio
- …
