358 research outputs found

    Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach

    Full text link
    [EN] In this article, a numerical methodology for assessing combustion noise in compression ignition engines is described with the specific purpose of analysing the unsteady pressure field inside the combustion chamber. The numerical results show consistent agreement with experimental measurements in both the time and frequency domains. Nonetheless, an exhaustive analysis of the calculation convergence is needed to guarantee an independent solution. These results contribute to the understanding of in-cylinder unsteady processes, especially of those related to combustion chamber resonances, and their effects on the radiated noise levels. The method was applied to different combustion system configurations by modifying the spray angle of the injector, evidencing that controlling the ignition location through this design parameter, it is possible to decrease the combustion noise by minimizing the resonance contribution. Important efficiency losses were, however, observed due to the injector/bowl matching worsening which compromises the performance and emissions levels.The authors want to express their gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD calculations using CONVERGE software.Torregrosa, AJ.; Broatch, A.; Margot, X.; GĂłmez-Soriano, J. (2018). Understanding the unsteady pressure field inside combustion chambers of compression-ignited engines using a computational fluid dynamics approach. International Journal of Engine Research. 1-13. https://doi.org/10.1177/1468087418803030S113Benajes, J., Novella, R., De Lima, D., & TribottĂ©, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867Costa, M., Bianchi, G. M., Forte, C., & Cazzoli, G. (2014). A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion. Energy Procedia, 45, 711-720. doi:10.1016/j.egypro.2014.01.076Navid, A., Khalilarya, S., & Taghavifar, H. (2016). Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model. Energy Conversion and Management, 126, 385-399. doi:10.1016/j.enconman.2016.08.014Benajes, J., GarcĂ­a, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Masterton, B., Heffner, H., & Ravizza, R. (1969). The Evolution of Human Hearing. The Journal of the Acoustical Society of America, 45(4), 966-985. doi:10.1121/1.1911574Strahle, W. C. (1978). Combustion noise. Progress in Energy and Combustion Science, 4(3), 157-176. doi:10.1016/0360-1285(78)90002-3Flemming, F., Sadiki, A., & Janicka, J. (2007). Investigation of combustion noise using a LES/CAA hybrid approach. Proceedings of the Combustion Institute, 31(2), 3189-3196. doi:10.1016/j.proci.2006.07.060Klos, D., & Kokjohn, S. L. (2014). Investigation of the sources of combustion instability in low-temperature combustion engines using response surface models. International Journal of Engine Research, 16(3), 419-440. doi:10.1177/1468087414556135Cyclic dispersion in engine combustion—Introduction by the special issue editors. (2015). International Journal of Engine Research, 16(3), 255-259. doi:10.1177/1468087415572740Hickling, R., Feldmaier, D. A., & Sung, S. H. (1979). Knock‐induced cavity resonances in open chamber diesel engines. The Journal of the Acoustical Society of America, 65(6), 1474-1479. doi:10.1121/1.382910Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Broatch, A., Margot, X., Gil, A., & Christian Donayre, (JosĂ©). (2007). Computational study of the sensitivity to ignition characteristics of the resonance in DI diesel engine combustion chambers. Engineering Computations, 24(1), 77-96. doi:10.1108/02644400710718583Eriksson, L. J. (1980). Higher order mode effects in circular ducts and expansion chambers. The Journal of the Acoustical Society of America, 68(2), 545-550. doi:10.1121/1.384768Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081Tutak, W., & Jamrozik, A. (2016). Validation and optimization of the thermal cycle for a diesel engine by computational fluid dynamics modeling. Applied Mathematical Modelling, 40(13-14), 6293-6309. doi:10.1016/j.apm.2016.02.021Payri, F., Benajes, J., Margot, X., & Gil, A. (2004). CFD modeling of the in-cylinder flow in direct-injection Diesel engines. Computers & Fluids, 33(8), 995-1021. doi:10.1016/j.compfluid.2003.09.003Benajes, J., Novella, R., De Lima, D., & Thein, K. (2017). Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine. Applied Energy, 193, 515-530. doi:10.1016/j.apenergy.2017.02.044Lesieur, M., MĂ©tais, O., & Comte, P. (2005). Large-Eddy Simulations of Turbulence. doi:10.1017/cbo9780511755507Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Silva, C. F., Leyko, M., Nicoud, F., & Moreau, S. (2013). Assessment of combustion noise in a premixed swirled combustor via Large-Eddy Simulation. Computers & Fluids, 78, 1-9. doi:10.1016/j.compfluid.2010.09.034Jamrozik, A., Tutak, W., Kociszewski, A., & Sosnowski, M. (2013). Numerical simulation of two-stage combustion in SI engine with prechamber. Applied Mathematical Modelling, 37(5), 2961-2982. doi:10.1016/j.apm.2012.07.040Qin, W., Xie, M., Jia, M., Wang, T., & Liu, D. (2014). Large eddy simulation of in-cylinder turbulent flows in a DISI gasoline engine. Applied Mathematical Modelling, 38(24), 5967-5985. doi:10.1016/j.apm.2014.05.004Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045Torregrosa, A. J., Broatch, A., MartĂ­n, J., & Monelletta, L. (2007). Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 18(7), 2131-2142. doi:10.1088/0957-0233/18/7/045Payri, F., Broatch, A., Margot, X., & Monelletta, L. (2008). Sound quality assessment of Diesel combustion noise using in-cylinder pressure components. Measurement Science and Technology, 20(1), 015107. doi:10.1088/0957-0233/20/1/015107Ihlenburg, F. (2003). The Medium-Frequency Range in Computational Acoustics: Practical and Numerical Aspects. Journal of Computational Acoustics, 11(02), 175-193. doi:10.1142/s0218396x03001900Lapuerta, M., Armas, O., & HernĂĄndez, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1Payri, F., Olmeda, P., MartĂ­n, J., & GarcĂ­a, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Broatch, A., Tormos, B., & Marant, V. (2005). New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise. Measurement Science and Technology, 16(2), 540-547. doi:10.1088/0957-0233/16/2/029Shahlari, A. J., Hocking, C., Kurtz, E., & Ghandhi, J. (2013). Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes. SAE International Journal of Engines, 6(1), 541-552. doi:10.4271/2013-01-1659Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9Dukowicz, J. K. (1980). A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229-253. doi:10.1016/0021-9991(80)90087-xReitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40Babajimopoulos, A., Assanis, D. N., Flowers, D. L., Aceves, S. M., & Hessel, R. P. (2005). A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. International Journal of Engine Research, 6(5), 497-512. doi:10.1243/146808705x30503Pal, P., Keum, S., & Im, H. G. (2015). Assessment of flamelet versus multi-zone combustion modeling approaches for stratified-charge compression ignition engines. International Journal of Engine Research, 17(3), 280-290. doi:10.1177/1468087415571006Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Broatch, A., Javier Lopez, J., GarcĂ­a-TĂ­scar, J., & Gomez-Soriano, J. (2018). Experimental Analysis of Cyclical Dispersion in Compression-Ignited Versus Spark-Ignited Engines and Its Significance for Combustion Noise Numerical Modeling. Journal of Engineering for Gas Turbines and Power, 140(10). doi:10.1115/1.4040287Molina, S., GarcĂ­a, A., Pastor, J. M., Belarte, E., & Balloul, I. (2015). Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 143, 211-227. doi:10.1016/j.apenergy.2015.01.03

    Quantifying Social Influence in an Online Cultural Market

    Get PDF
    We revisit experimental data from an online cultural market in which 14,000 users interact to download songs, and develop a simple model that can explain seemingly complex outcomes. Our results suggest that individual behavior is characterized by a two-step process–the decision to sample and the decision to download a song. Contrary to conventional wisdom, social influence is material to the first step only. The model also identifies the role of placement in mediating social signals, and suggests that in this market with anonymous feedback cues, social influence serves an informational rather than normative role

    Trust Perceptions of Online Travel Information by Different Content Creators: Some Social and Legal Implications

    Get PDF
    Consumers are increasingly turning to the online environment to provide information to assist them in making purchase decisions related to travel products. They often rely on travel recommendations from different sources, such as sellers, independent experts and, increasingly, other consumers. A new type of online content, usergenerated content (UGC), provides a number of legal and social challenges to providers and users of that content, especially in relation to areas such as defamation, misrepresentation and social embarrassment. This paper reports research that examined the level of trustworthiness of online travel information from these different sources. The study used a survey of Australian travel consumers (n= 12,000) and results support the notion that there are differences in the level of trust for online travel information from different sources. Respondents ‘tended to agree’ that they trusted information provided by travel agents, information from commercial operators and comments made by travellers on third party websites. However, the highest level of trust was afforded to information provided on State government tourism websites. These results suggest that greater trust is placed in online travel comments when they are on a specific travel website than when they are on a more generic social networking website. However, respondents were ‘not sure’ that they trusted comments made by travellers on weblogs and on social networking sites. Some 88% of respondents that had not visited UGC websites (or were unsure if they had) indicated that they thought that UGC would be useful in the future – suggesting that they feel that any concerns they may have in relation to legal and social problems resulting from its use will be resolved

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Salve Regina Arboretum Ten Year Plan to Reach Level III Accreditation

    Get PDF
    The Salve Regina University Arboretum, located in Newport, Rhode Island is currently registered as a Level II arboretum and is intertwined with the city of Newport Arboretum. The university now has intentions to reach Level III status, as part of a ten-year plan. This plan was developed by the students of the Spring 2018 BIO 255: Conservation Biology course, instructed by Dr. Jameson Chace, Associate Professor of biology at Salve Regina University. As part of a curriculum geared towards civic engagement, the class focused on creating and optimizing strategies that can be applied to the ten-year plan. These strategies were applied to the plan categorically: a team to inventory the current tree collection; a team to develop formal educational programming; a team for informal educational programming; a team to establish goals for conservation initiative related to the arboretum; a team dedicated to research related to arboreta; and a team to develop a list of species of special interest to add to the arboretum in the coming years. In the following document, each team’s strategies for the ten-year plan are outlined. Each of the components of this plan incorporate means to fulfill the conditions to meet Level III arboretum status so that the arboretum can apply for official registration. The aforementioned teams were tasked with designing a foundation on which to work up from. This includes formal educational programming to be applied to classroom settings and informal educational programming which can be applied to community outreach-based settings. The teams that worked to strengthen the arboretum’s mission of conservation focused on researching trees that can fit into the current landscape while providing some sort of benefit to the surrounding flora/fauna. Further, many of the species of interest, such as the chestnut, hold historical value to the greater Rhode Island region. In all, the Salve Regina Arboretum must achieve a total of 500 unique species of trees and woody plants as part of its efforts to apply for Level III status. In addition to the programming and research performed so far by the student teams, the arboretum must also hire a curator to manage the programming and to oversee the arboretum as a whole. Additionally, the arboretum must continue to actively collaborate with other arboreta and should encourage scientific research. It is important to recognize that the Salve Regina University Arboretum has already been utilized in the field of microbiology and has gained some attention at the university as a resource for further research and investigation. This ten year plan, along with resources within in it, is designed to provide a list of potential guidelines and ideas that can be applied for the arboretum’s benefit and growth. The Salve Regina University arboretum is a continually growing and developing part of the greater Newport, Rhode Island community, and will continue to strengthen its mission and that of the university which oversees its success.https://digitalcommons.salve.edu/bio255_arboretum/1000/thumbnail.jp

    Does neurocognitive training have the potential to improve dietary self-care in type 2 diabetes? Study protocol of a double blind randomised controlled trial

    Get PDF
    Dietary self-care is a key element of self-management in type 2 diabetes. It is also the most difficult aspect of diabetes self-management. Adhering to long-term dietary goals and resisting immediate food desires requires top-down inhibitory control over subcortical impulsive and emotional responses to food. Practising simple neurocognitive tasks can improve inhibitory control and health behaviours that depend on inhibitory control, such as resisting alcohol consumption. It is yet to be investigated, however, whether neurocognitive training can improve dietary self-care in people with type 2 diabetes. The aim of this randomised controlled trial is to investigate whether web-based neurocognitive training can improve the ability of people with type 2 diabetes to resist tempting foods and better adhere to a healthy dietary regime

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • 

    corecore