1,604 research outputs found

    The Shadow of Eternity: Belief and Structure in Herbert, Vaughan, and Traherne

    Get PDF
    The poetry of Herbert, Vaughan, and Traherne represents “an attempt to shape their lives and verse around the fact of divine presence and influence,” writes Sharon Seelig. The relationship between belief and expression in these three metaphysical poets is the subject of this deeply perceptive study. Each of these poets held to some extent the notion of dual reality, of the world as indicative of a higher reality, but their responses to this tradition vary greatly—from the ongoing struggle between God and the poet of The Temple, which finally transforms the materials of everyday life and worship; to the more difficult unity of Silex Scintillans, with its tension between illumination and resignation; to the ecstatic proclamations of Thomas Traherne, whose sense of divine reality at first seems so strong as to destroy the characteristic metaphysical tension between this world and the next. Seelig’s study proceeds from individual poems to the whole work, exploring the relation of cosmology and religious experience to poetic form. Sharon Cadman Seelig has taught English at Smith, Wellesley, and Mount Holyoke Colleges. A graceful, compact study which adds significantly to our appreciation of Herbert, Vaughan, and Traherne. —Seventeenth-Century News An impressive reading of Herbert....Seelig\u27s work resonates with an erudite virtuosity, easily equal to its demanding subject. —Christianity & Literaturehttps://uknowledge.uky.edu/upk_english_language_and_literature_british_isles/1065/thumbnail.jp

    Selenium-Binding Protein 1 Indicates Myocardial Stress and Risk for Adverse Outcome in Cardiac Surgery

    Get PDF
    Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1 concentrations in patients (n = 75) necessitating cardioplegia and a cardiopulmonary bypass (CPB) during the course of the cardiac surgery. Serum samples were collected at seven time-points spanning the full surgical process. SELENBP1 was quantified by a highly sensitive newly developed immunological assay. Serum concentrations of SELENBP1 increased markedly during the intervention and showed a positive association with the duration of ischemia (ρ = 0.6, p < 0.0001). Elevated serum SELENBP1 concentrations at 1 h after arrival at the intensive care unit (post-surgery) were predictive to identify patients at risk of adverse outcome (death, bradycardia or cerebral ischemia, "endpoint 1"; OR 29.9, CI 3.3-268.8, p = 0.00027). Circulating SELENBP1 during intervention (2 min after reperfusion or 15 min after weaning from the CPB) correlated positively with an established marker of myocardial infarction (CK-MB) measured after the intervention (each with ρ = 0.5, p < 0.0001). We concluded that serum concentrations of SELENBP1 were strongly associated with cardiac arrest and the duration of myocardial ischemia already early during surgery, thereby constituting a novel and promising quantitative marker for myocardial hypoxia, with a high potential to improve diagnostics and prediction in combination with the established clinical parameters

    Stub model for dephasing in a quantum dot

    Full text link
    As an alternative to Buttiker's dephasing lead model, we examine a dephasing stub. Both models are phenomenological ways to introduce decoherence in chaotic scattering by a quantum dot. The difference is that the dephasing lead opens up the quantum dot by connecting it to an electron reservoir, while the dephasing stub is closed at one end. Voltage fluctuations in the stub take over the dephasing role from the reservoir. Because the quantum dot with dephasing lead is an open system, only expectation values of the current can be forced to vanish at low frequencies, while the outcome of an individual measurement is not so constrained. The quantum dot with dephasing stub, in contrast, remains a closed system with a vanishing low-frequency current at each and every measurement. This difference is a crucial one in the context of quantum algorithms, which are based on the outcome of individual measurements rather than on expectation values. We demonstrate that the dephasing stub model has a parameter range in which the voltage fluctuations are sufficiently strong to suppress quantum interference effects, while still being sufficiently weak that classical current fluctuations can be neglected relative to the nonequilibrium shot noise.Comment: 8 pages with 1 figure; contribution for the special issue of J.Phys.A on "Trends in Quantum Chaotic Scattering

    Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring

    Full text link
    We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with two different four-terminal configurations. While the amplitude and the phase of the AB oscillations are well explained within the framework of the Landaur-B\"uttiker formalism, it is found that the probe configuration strongly affects the coherence time of the electrons, i.e., the decoherence is much reduced in the configuration of so-called nonlocal resistance. This result should provide an important clue in clarifying the mechanism of quantum decoherence in solids.Comment: 4 pages, 4 figures, RevTe

    Electron fractionalization induced dephasing in Luttinger liquids

    Full text link
    Using the appropriate fractionalization mechanism, we correctly derive the temperature (T) and interaction dependence of the electron lifetime τF\tau_F in Luttinger liquids. For strong enough interactions, we report that (TτF)∝g(T\tau_F)\propto g, with gâ‰Ș1g\ll 1 being the standard Luttinger exponent; This reinforces that electrons are {\it not} good quasiparticles. We immediately emphasize that this is of importance for the detection of electronic interferences in ballistic 1D rings and carbon nanotubes, inducing ``dephasing'' (strong reduction of Aharonov-Bohm oscillations).Comment: 5 pages, 1 figure (Final version for PRB Brief Report

    Probe-configuration dependent dephasing in a mesoscopic interferometer

    Full text link
    Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on the probe configuration in agreement with a recent experiment by Kobayashi et al. (J. Phys. Soc. Jpn. 71, 2094 (2002)). Voltage fluctuations in the measurement circuit are shown to be the source of the configuration dependence.Comment: 4 pages, 3 figure

    Detection of CWD Prions in Urine and Saliva of Deer by Transgenic Mouse Bioassay

    Get PDF
    Chronic wasting disease (CWD) is a prion disease affecting captive and free-ranging cervids (e.g. deer, elk, and moose). The mechanisms of CWD transmission are poorly understood, though bodily fluids are thought to play an important role. Here we report the presence of infectious prions in the urine and saliva of deer with chronic wasting disease (CWD). Prion infectivity was detected by bioassay of concentrated, dialyzed urine and saliva in transgenic mice expressing the cervid PrP gene (Tg[CerPrP] mice). In addition, PrP(CWD) was detected in pooled and concentrated urine by protein misfolding cyclic amplification (PMCA). The concentration of abnormal prion protein in bodily fluids was very low, as indicated by: undetectable PrP(CWD) levels by traditional assays (western blot, ELISA) and prolonged incubation periods and incomplete TSE attack rates in inoculated Tg(CerPrP) mice (373(+/-)3 days in 2 of 9 urine-inoculated mice and 342(+/-)109 days in 8 of 9 saliva-inoculated mice). These findings help extend our understanding of CWD prion shedding and transmission and portend the detection of infectious prions in body fluids in other prion infections
    • 

    corecore