22 research outputs found

    Mechanisms Leading to Chromosomal Instability in Oral Cancer Cells

    Get PDF
    In the United States, cancer is a leading cause of death, second only to heart disease (MOKDAD et al. 2004). Although it is estimated that in 2005, cancer of the oral cavity will account for only 2.1% of cancer cases and 1.3% of overall cancer deaths in the U. S. (JEMAL et al. 2005), high-risk behaviors such as smoking cigarettes, using smokeless tobacco, and consuming excessive alcohol have been shown to play a major role in OSCC development. Exposure to environmental agents, including tobacco products, alcoholic beverages, and/or viruses, such as human papillomavirus (FORASTIERE et al. 2001; HO and CALIFANO 2004; MORK et al. 2001) have a profound influence on cells within the oral cavity. These factors have been shown to induce genetic alterations including chromosomal alterations, DNA changes, and/or epigenetic alterations, such as changes in DNA methylation that affect genetic regulation. Genetic alterations in cells are useful biological markers that assist in early detection of cancer and response to therapy (SIDRANSKY 1995). Currently, however, there are no useful biomarkers to identify early changes involved in OSCC development. One genetic alteration observed in 45% of OSCC is amplification of chromosomal band, 11q13. This event has been shown to follow dysplastic cellular changes, but occur prior to development of carcinoma in situ (FORASTIERE et al. 2001). Therefore, 11q13 amplification may be a useful biomarker for detecting OSCC. In addition, understanding the molecular mechanisms that promote 11q13 gene amplification may provide valuable information for devising novel prevention measures and therapies. In the current study, we show that the primary mechanism promoting 11q13 gene amplification is BFB cycles. Furthermore, we suggest that breakage at the common fragile site, FRA11F, may be responsible for initiating 11q13 gene amplification. By determining the primary mechanism that leads to 11q13 amplification in OSCC, additional investigations focusing on the biological basis of this process may provide important information for developing successful measures and treatments that will increase the survival rate for individuals afflicted with oral cancer

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2DBCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.This work was supported in part by the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital; by a Stand Up to Cancer Innovative Research Grant and St. Baldrick’s Foundation Scholar Award (to C.G.M.); by a St. Baldrick’s Consortium Award (S.P.H.), by a Leukemia and Lymphoma Society Specialized Center of Research grant (S.P.H. and C.G.M.), by a Lady Tata Memorial Trust Award (I.I.), by a Leukemia and Lymphoma Society Special Fellow Award and Alex’s Lemonade Stand Foundation Young Investigator Awards (K.R.), by an Alex’s Lemonade Stand Foundation Award (M.L.) and by National Cancer Institute Grants CA21765 (St Jude Cancer Center Support Grant), U01 CA157937 (C.L.W. and S.P.H.), U24 CA114737 (to Dr Gastier-Foster), NCI Contract HHSN261200800001E (to Dr Gastier-Foster), U10 CA180820 (ECOG-ACRIN Operations) and CA180827 (E.P.); U10 CA180861 (C.D.B. and G.M.); U24 CA196171 (The Alliance NCTN Biorepository and Biospecimen Resource); CA145707 (C.L.W. and C.G.M.); and grants to the COG: U10 CA98543 (Chair’s grant and supplement to support the COG ALL TARGET project), U10 CA98413 (Statistical Center) and U24 CA114766 (Specimen Banking). This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract Number HHSN261200800001E

    Mono-allelic KCNB2 variants lead to a neurodevelopmental syndrome caused by altered channel inactivation

    No full text
    International audienceIon channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations

    Dasatinib with intensive chemotherapy in de novo paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (CA180-372/COG AALL1122):a single-arm, multicentre, phase 2 trial

    No full text
    BACKGROUND: The outcome of children with Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukaemia significantly improved with the combination of imatinib and intensive chemotherapy. We aimed to investigate the efficacy of dasatinib, a second-generation ABL-class inhibitor, with intensive chemotherapy in children with newly diagnosed Ph-positive acute lymphoblastic leukaemia.METHODS: CA180-372/COG AALL1122 was a joint Children's Oncology Group (COG) and European intergroup study of post-induction treatment of Ph-positive acute lymphoblastic leukaemia (EsPhALL) open-label, single-arm, phase 2 study. Eligible patients (aged &gt;1 year to &lt;18 years) with newly diagnosed Ph-positive acute lymphoblastic leukaemia and performance status of at least 60% received EsPhALL chemotherapy plus dasatinib 60 mg/m2 orally once daily from day 15 of induction. Patients with minimal residual disease of at least 0·05% after induction 1B or who were positive for minimal residual disease after the three consolidation blocks were classified as high risk and allocated to receive haematopoietic stem-cell transplantation (HSCT) in first complete remission. The remaining patients were considered standard risk and received chemotherapy plus dasatinib for 2 years. The primary endpoint was the 3-year event-free survival of dasatinib plus chemotherapy compared with external historical controls. The trial was considered positive if one of the following conditions was met: superiority over chemotherapy alone in the AIEOP-BFM 2000 high-risk group; or non-inferiority (with a margin of -5%) or superiority to imatinib plus chemotherapy in the EsPhALL 2010 cohort. All participants who received at least one dose of dasatinib were included in the safety and efficacy analyses. This trial was registered with ClinicalTrials.gov, NCT01460160, and recruitment is closed.FINDINGS: Between March 13, 2012, and May 27, 2014, 109 patients were enrolled at 69 sites (including 51 COG sites in the USA, Canada, and Australia, and 18 EsPhALL sites in Italy and the UK). Three patients were ineligible and did not receive dasatinib. 106 patients were treated and included in analyses (49 [46%] female and 57 [54%] male; 85 [80%] White, 13 [12%] Black or African American, five [5%] Asian, and three [3%] other races; 24 [23%] Hispanic or Latino ethnicity). All 106 treated patients reached complete remission; 87 (82%) were classified as standard risk and 19 (18%) met HSCT criteria and were classified as high risk, but only 15 (14%) received HSCT in first complete remission. The 3-year event-free survival of dasatinib plus chemotherapy was superior to chemotherapy alone (65·5% [90% Clopper-Pearson CI 57·7 to 73·7] vs 49·2% [38·0 to 60·4]; p=0·032), and was non-inferior to imatinib plus chemotherapy (59·1% [51·8 to 66·2], 90% CI of the treatment difference: -3·3 to 17·2), but not superior to imatinib plus chemotherapy (65·5% vs 59·1%; p=0·27). The most frequent grade 3-5 adverse events were febrile neutropenia (n=93) and bacteraemia (n=21). Nine remission deaths occurred, which were due to infections (n=5), transplantation-related (n=2), due to cardiac arrest (n=1), or had an unknown cause (n=1). No dasatinib-related deaths occurred.INTERPRETATION: Dasatinib plus EsPhALL chemotherapy is safe and active in paediatric Ph-positive acute lymphoblastic leukaemia. 3-year event-free survival was similar to that of previous Ph-positive acute lymphoblastic leukaemia trials despite the limited use of HSCT in first complete remission.FUNDING: Bristol Myers Squibb.</p
    corecore