193 research outputs found
The solar-like CoRoT target HD 170987: spectroscopic and seismic observations
The CoRoT mission is in its third year of observation and the data from the
second long run in the galactic centre direction are being analysed. The
solar-like oscillating stars that have been observed up to now have given some
interesting results, specially concerning the amplitudes that are lower than
predicted. We present here the results from the analysis of the star HD
170987.The goal of this research work is to characterise the global parameters
of HD 170987. We look for global seismic parameters such as the mean large
separation, maximum amplitude of the modes, and surface rotation because the
signal-to-noise ratio in the observations do not allow us to measure individual
modes. We also want to retrieve the stellar parameters of the star and its
chemical composition.We have studied the chemical composition of the star using
ground-based observations performed with the NARVAL spectrograph. We have used
several methods to calculate the global parameters from the acoustic
oscillations based on CoRoT data. The light curve of the star has been
interpolated using inpainting algorithms to reduce the effect of data gaps. We
find power excess related to p modes in the range [400 - 1200]muHz with a mean
large separation of 55.2+-0.8muHz with a probability above 95% that increases
to 55.9 +-0.2muHz in a higher frequency range [500 - 1250] muHz and a rejection
level of 1%. A hint of the variation of this quantity with frequency is also
found. The rotation period of the star is estimated to be around 4.3 days with
an inclination axis of i=50 deg +20/-13. We measure a bolometric amplitude per
radial mode in a range [2.4 - 2.9] ppm around 1000 muHz. Finally, using a grid
of models, we estimate the stellar mass, M=1.43+-0.05 Msun, the radius,
R=1.96+-0.046 Rsun, and the age ~2.4 Gyr.Comment: 12 pages, 15 figures, accepted for publication in A&
Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments
Seismology of stars is strongly developing. To address this question we have
formed an international collaboration OPAC to perform specific experimental
measurements, compare opacity calculations and improve the opacity calculations
in the stellar codes [1]. We consider the following opacity codes: SCO,
CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large
differences for Fe and Ni in equivalent conditions of envelopes of type II
supernova precursors, temperatures between 15 and 40 eV and densities of a few
mg/cm3 [2, 3, 4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar
results and differ from OP ones for the lower temperatures and for spectral
interval values [3]. In this work we discuss the role of Configuration
Interaction (CI) and the influence of the number of used configurations. We
present and include in the opacity code comparisons new HULLAC-v9 calculations
[5, 6] that include full CI. To illustrate the importance of this effect we
compare different CI approximations (modes) available in HULLAC-v9 [7]. These
results are compared to previous predictions and to experimental data.
Differences with OP results are discussed.Comment: 4 pages, 3 figures, conference Inertial Fusion Sciences and
Applications, Bordeaux, 12th to 16th September 2011; EPJ web of Conferences
201
Enhanced lithium depletion in Sun-like stars with orbiting planets
The surface abundance of lithium on the Sun is 140 times less than
protosolar, yet the temperature at the base of the surface convective zone is
not hot enough to burn Li. A large range of Li abundances in solar type stars
of the same age, mass and metallicity is observed, but theoretically difficult
to understand. An earlier suggestion that Li is more depleted in stars with
planets was weakened by the lack of a proper comparison sample of stars without
detected planets. Here we report Li abundances for an unbiased sample of
solar-analogue stars with and without detected planets. We find that the
planet-bearing stars have less than 1 per cent of the primordial Li abundance,
while about 50 per cent of the solar analogues without detected planets have on
average 10 times more Li. The presence of planets may increase the amount of
mixing and deepen the convective zone to such an extent that the Li can be
burned.Comment: 13 pages, 2 figure
Fundamental Properties of Stars using Asteroseismology from Kepler & CoRoT and Interferometry from the CHARA Array
We present results of a long-baseline interferometry campaign using the PAVO
beam combiner at the CHARA Array to measure the angular sizes of five
main-sequence stars, one subgiant and four red giant stars for which solar-like
oscillations have been detected by either Kepler or CoRoT. By combining
interferometric angular diameters, Hipparcos parallaxes, asteroseismic
densities, bolometric fluxes and high-resolution spectroscopy we derive a full
set of near model-independent fundamental properties for the sample. We first
use these properties to test asteroseismic scaling relations for the frequency
of maximum power (nu_max) and the large frequency separation (Delta_nu). We
find excellent agreement within the observational uncertainties, and
empirically show that simple estimates of asteroseismic radii for main-sequence
stars are accurate to <~4%. We furthermore find good agreement of our measured
effective temperatures with spectroscopic and photometric estimates with mean
deviations for stars between T_eff = 4600-6200 K of -22+/-32 K (with a scatter
of 97K) and -58+/-31 K (with a scatter of 93 K), respectively. Finally we
present a first comparison with evolutionary models, and find differences
between observed and theoretical properties for the metal-rich main-sequence
star HD173701. We conclude that the constraints presented in this study will
have strong potential for testing stellar model physics, in particular when
combined with detailed modelling of individual oscillation frequencies.Comment: 18 pages, 12 figures, 7 tables; accepted for publication in Ap
Origin and evolution of the light nuclides
After a short historical (and highly subjective) introduction to the field, I
discuss our current understanding of the origin and evolution of the light
nuclides D, He-3, He-4, Li-6, Li-7, Be-9, B-10 and B-11. Despite considerable
observational and theoretical progress, important uncertainties still persist
for each and every one of those nuclides. The present-day abundance of D in the
local interstellar medium is currently uncertain, making it difficult to infer
the recent chemical evolution of the solar neighborhood. To account for the
observed quasi-constancy of He-3 abundance from the Big Bang to our days, the
stellar production of that nuclide must be negligible; however, the scarce
observations of its abundance in planetary nebulae seem to contradict this
idea. The observed Be and B evolution as primaries suggests that the source
composition of cosmic rays has remained quasi-constant since the early days of
the Galaxy, a suggestion with far reaching implications for the origin of
cosmic rays; however, the main idea proposed to account for that constancy,
namely that superbubbles are at the source of cosmic rays, encounters some
serious difficulties. The best explanation for the mismatch between primordial
Li and the observed "Spite-plateau" in halo stars appears to be depletion of Li
in stellar envelopes, by some yet poorly understood mechanism. But this
explanation impacts on the level of the recently discovered early ``Li-6
plateau'', which (if confirmed), seriously challenges current ideas of cosmic
ray nucleosynthesis.Comment: 18 pages, 9 figs. Invited Review in "Symposium on the Composition of
Matter", honoring Johannes Geiss on the occasion of his 80th birthday
(Grindelwald, Switzerland, Sept. 2006), to be published in Space Science
Series of ISS
Allergic Rhinitis and its Associated Co-Morbidities at Bugando Medical Centre in Northwestern Tanzania; A Prospective Review of 190 Cases.
Allergic rhinitis is one of the commonest atopic diseases which contribute to significant morbidity world wide while its epidemiology in Tanzania remains sparse. There was paucity of information regarding allergic rhinitis in our setting; therefore it was important to conduct this study to describe our experience on allergic rhinitis, associated co-morbidities and treatment outcome in patients attending Bugando Medical Centre. This was descriptive cross-sectional study involving all patients with a clinical diagnosis of allergic rhinitis at Bugando Medical Centre over a three-month period between June 2011 and August 2011. Data was collected using a pre-tested coded questionnaire and analyzed using SPSS statistical computer software version 17.0. A total of 190 patients were studied giving the prevalence of allergic rhinitis 14.7%. The median age of the patients was 8.5 years. The male to female ratio was 1:1. Adenoid hypertrophy, tonsillitis, hypertrophy of inferior turbinate, nasal polyps, otitis media and sinusitis were the most common co-morbidities affecting 92.6% of cases and were the major reason for attending hospital services. Sleep disturbance was common in children with adenoids hypertrophy (χ2 = 28.691, P = 0.000). Allergic conjunctivitis was found in 51.9%. The most common identified triggers were dust, strong perfume odors and cold weather (P < 0.05). Strong perfume odors affect female than males (χ2 = 4.583, P = 0.032). In this study family history of allergic rhinitis was not a significant risk factor (P =0.423). The majority of patients (68.8%) were treated surgically for allergic rhinitis co morbidities. Post operative complication and mortality rates were 2.9% and 1.6% respectively. The overall median duration of hospital stay of in-patients was 3 days (2 - 28 days). Most patients (98.4%) had satisfactory results at discharge. The study shows that allergic rhinitis is common in our settings representing 14.7% of all otorhinolaryngology and commonly affecting children and adolescent. Sufferers seek medical services due to co-morbidities of which combination of surgical and medical treatment was needed. High index of suspicions in diagnosing allergic rhinitis and early treatment is recommended
A precise asteroseismic age and radius for the evolved Sun-like star KIC 11026764
The primary science goal of the Kepler Mission is to provide a census of
exoplanets in the solar neighborhood, including the identification and
characterization of habitable Earth-like planets. The asteroseismic
capabilities of the mission are being used to determine precise radii and ages
for the target stars from their solar-like oscillations. Chaplin et al. (2010)
published observations of three bright G-type stars, which were monitored
during the first 33.5 days of science operations. One of these stars, the
subgiant KIC 11026764, exhibits a characteristic pattern of oscillation
frequencies suggesting that it has evolved significantly. We have derived
asteroseismic estimates of the properties of KIC 11026764 from Kepler
photometry combined with ground-based spectroscopic data. We present the
results of detailed modeling for this star, employing a variety of independent
codes and analyses that attempt to match the asteroseismic and spectroscopic
constraints simultaneously. We determine both the radius and the age of KIC
11026764 with a precision near 1%, and an accuracy near 2% for the radius and
15% for the age. Continued observations of this star promise to reveal
additional oscillation frequencies that will further improve the determination
of its fundamental properties.Comment: 16 pages, 6 figures, 4 tables, ApJ in pres
A uniform asteroseismic analysis of 22 solar-type stars observed by Kepler
Asteroseismology with the Kepler space telescope is providing not only an
improved characterization of exoplanets and their host stars, but also a new
window on stellar structure and evolution for the large sample of solar-type
stars in the field. We perform a uniform analysis of 22 of the brightest
asteroseismic targets with the highest signal-to-noise ratio observed for 1
month each during the first year of the mission, and we quantify the precision
and relative accuracy of asteroseismic determinations of the stellar radius,
mass, and age that are possible using various methods. We present the
properties of each star in the sample derived from an automated analysis of the
individual oscillation frequencies and other observational constraints using
the Asteroseismic Modeling Portal (AMP), and we compare them to the results of
model-grid-based methods that fit the global oscillation properties. We find
that fitting the individual frequencies typically yields asteroseismic radii
and masses to \sim1% precision, and ages to \sim2.5% precision (respectively 2,
5, and 8 times better than fitting the global oscillation properties). The
absolute level of agreement between the results from different approaches is
also encouraging, with model-grid-based methods yielding slightly smaller
estimates of the radius and mass and slightly older values for the stellar age
relative to AMP, which computes a large number of dedicated models for each
star. The sample of targets for which this type of analysis is possible will
grow as longer data sets are obtained during the remainder of the mission.Comment: 13 pages, 5 figures in the main text, 22 figures in Appendix.
Accepted for publication in Ap
- …