2,876 research outputs found

    Situations in traffic - how quickly they change

    Full text link
    Spatio-temporal correlations of intensity of traffic are analysed for one week data collected in the motorway M-30 around Madrid in January 2009. We found that the lifetime of these correlations is the shortest in the evening, between 6 and 8 p.m. This lifetime is a new indicator how much attention of drivers is demanded in given traffic conditions.Comment: 9 pages, 6 figure

    Localization Properties of Quantized Magnetostatic Modes in Nanocubes

    Full text link
    We investigate the dynamical properties of a system of interacting magnetic dipoles disposed in sites of an sc lattice and forming a cubic-shaped sample of size determined by the cube edge length (N-1)a (a being the lattice constant, N representing the number of dipolar planes). The dipolar field resulting from the dipole-dipole interactions is calculated numerically in points of the axis connecting opposite cube face centers (central axis) by collecting individual contributions to this field coming from each of the N atomic planes perpendicular to the central axis. The applied magnetic field is assumed to be oriented along the central axis, magnetizing uniformly the whole sample, all the dipoles being aligned parallelly in the direction of the applied field. The frequency spectrum of magnetostatic waves propagating in the direction of the applied field is found numerically by solving the Landau-Lifshitz equation of motion including the local (nonhomogeneous) dipolar field component; the mode amplitude spatial distributions (mode profiles) are depicted as well. It is found that only the two energetically highest modes have bulk-extended character. All the remaining modes are of localized nature; more precisely, the modes forming the lower part of the spectrum are localized in the subsurface region, while the upper-spectrum modes are localized around the sample center. We show that the mode localization regions narrow down as the cube size, N, increases (we investigated the range of N=21 to N=101), and in sufficiently large cubes one obtains practically only center-localized and surface-localized magnetostatic modes.Comment: 20 pages, 9 figures in postscript, useing Revtex4.cl

    Finite-difference modelling to evaluate seismic P-wave and shear-wave field data

    Get PDF
    High-resolution reflection seismic methods are an established non-destructive tool for engineering tasks. In the near surface, shear-wave reflection seismic measurements usually offer a higher spatial resolution in the same effective signal frequency spectrum than P-wave data, but data quality varies more strongly. To discuss the causes of these differences, we investigated a P-wave and a SH-wave seismic reflection profile measured at the same location on the island of Föhr, Germany and applied seismic reflection processing to the field data as well as finite-difference modelling of the seismic wave field. The simulations calculated were adapted to the acquisition field geometry, comprising 2 m receiver distance (1 m for SH wave) and 4 m shot distance along the 1.5 km long P-wave and 800 m long SH-wave profiles. A Ricker wavelet and the use of absorbing frames were first-order model parameters. The petrophysical parameters to populate the structural models down to 400 m depth were taken from borehole data, VSP (vertical seismic profile) measurements and cross-plot relations. The simulation of the P-wave wave-field was based on interpretation of the P-wave depth section that included a priori information from boreholes and airborne electromagnetics. Velocities for 14 layers in the model were derived from the analysis of five nearby VSPs (vP =1600–2300 m s-1). Synthetic shot data were compared with the field data and seismic sections were created. Major features like direct wave and reflections are imaged. We reproduce the mayor reflectors in the depth section of the field data, e.g. a prominent till layer and several deep reflectors. The SH-wave model was adapted accordingly but only led to minor correlation with the field data and produced a higher signal-to-noise ratio. Therefore, we suggest to consider for future simulations additional features like intrinsic damping, thin layering, or a near-surface weathering layer. These may lead to a better understanding of key parameters determining the data quality of near-surface shear-wave seismic measurements

    Optimal ratio between phase basis and bit basis in QKD

    Full text link
    In the original BB84 protocol, the bit basis and the phase basis are used with equal probability. Lo et al (J. of Cryptology, 18, 133-165 (2005)) proposed to modify the ratio between the two bases by increasing the final key generation rate. However, the optimum ratio has not been derived. In this letter, in order to examine this problem, the ratio between the two bases is optimized for exponential constraints given Eve's information distinguishability and the final error probability

    Influence of nonmagnetic dielectric spacers on the spin wave response of one-dimensional planar magnonic crystals

    Get PDF
    The one-dimensional planar magnonic crystals are usually fabricated as a sequence of stripes intentionally or accidentally separated by non-magnetic spacers. The influence of spacers on shaping the spin wave spectra is complex and still not completely clarified. We performed the detailed numerical studies of the one-dimensional single- and bi-component magnonic crystals comprised of a periodic array of thin ferromagnetic stripes separated by non-magnetic spacers. We showed that the dynamic dipolar interactions between the stripes mediated by non-magnetic spacer, even ultra-narrow, significantly shift up the frequency of the ferromagnetic resonance and simultaneously reduce the spin wave group velocity, which is manifested by the flattening of the magnonic band. We attributed these changes in the spectra to the modifications of dipolar pinning and shape anisotropy both dependent on the width of the spacers and the thickness of the stripes, as well as to the dynamical magnetic volume charges formed due to inhomogeneous spin wave amplitude

    Shear wave reflection seismic yields subsurface dissolution and subrosion patterns: application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan

    Get PDF
    Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2–10 m) compacted salt layer formerly suggested to lie at ca. 35–40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings

    Near‐surface fault detection using high‐resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia

    Get PDF
    High‐resolution, near‐surface, shear wave reflection seismic measurements were carried out in November 2013 at the CO2CRC Otway Project site, Victoria, Australia, with the aim to determine whether and, if so, where deeper faults reach the near subsurface. From a previous P wave 3‐D reflection seismic data set that was concentrated on a reservoir at 2 km depth, we can only interpret faults up to 400 m below sea level. For the future monitoring in the overburden of the CO2 reservoir it is important to know whether and how the faults continue in the subsurface. We prove that two regional fault zones do in fact reach the surface instead of dying out at depth. Individual first‐break signatures in the shot gathers along the profiles support this interpretation. However, this finding does not imply perforce communication between the reservoir and the surface in the framework of CO2 injection. The shear wave seismic sections are complementary to existing P wave volumes. They image with high resolution (better than 3 m vertically) different tectonic structures. Similar structures also outcrop on the southern coast of the Otway Basin. Both the seismic and the outcrops evidence the complex youngest structural history of the area.BMBF, 03G0797A, Verbundprojekt UR VI: PROTECT; Vorhersage von Deformation fĂŒr eine abgesicherte Speicherung von Kohlenstoff (PRediction Of deformation To Ensure Carbon Traps); Vorhaben: Subseismische Deformationsvorhersage potentieller Wegsamkeiten und ihre seismische Validierung - Sonderprogramm GEOTECHNOLOGIE

    Fault‐controlled lithospheric detachment of the volcanic southern South Atlantic rift

    Get PDF
    © 2016. American Geophysical Union.We present structural models of two exemplary conjugate seismic lines of the southernmost South Atlantic margins to examine their initial evolution, especially the seaward‐dipping reflectors (SDRs). Modeling illustrates the different structure and inclination angles of the SDRs, which therefore require different subsidence histories. Since typical symmetrical subsidence models are not applicable, we suggest a model with a westward‐dipping detachment fault that offsets the SDRs on the South American margin and we speculate on passively subsided SDRs on the South African margin. We propose a simple‐shear rifting mechanism to explain the initial break‐up of the South Atlantic.DFG, 61089689, SPP 1375: SAMPLE: South Atlantic Margin Processes and Links with onshore Evolutio

    CP violation through particle mixing and the H-A lineshape

    Get PDF
    We consider the possibility of looking for CP-mixing effects in two-Higgs doublet models (and particularly in the MSSM) by studying the lineshape of the CP-even (H) and CP-odd (A) neutral scalars. In most cases H and A come quite degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced. The corresponding transition amplitude contains then CP-even and CP-odd components; besides the signal of intereference between both amplitudes, leading to a CP-odd asymmetry, we propose to look for the mixing probability itself, a quantity which, although CP-even, can originate only from a CP-odd amplitude. We show that, in general, the effect of such a mixing probability cannot be mimicked by (or be re-absorbed into) a simple redefinition of the H and A masses in the context of a CP-conserving model. Specifically, the effects of the CP-mixing are such that, either the mass-splitting of the H and A bosons cannot be accounted for in the absence of CP-mixing, and/or the detailed energy dependence of the produced lineshape is clearly different from the one obtained by redefining the masses, but not allowing any mixing. This analysis suggests that the detailed study of the lineshape of this Higgs system may provide valuable information on the CP nature of the underlying theory.Comment: 16 pages, 13 figures; v2: added one reference; v3: radiative corrections taken into account, agreement now with CP-SuperH, conclusions unchanged. v3 matches the paper version accepted for publication in JHE

    Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model

    Get PDF
    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco’s Modified Eagle’s Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability
    • 

    corecore