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Influence of nonmagnetic dielectric spacers on the spin-wave response of one-dimensional
planar magnonic crystals
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2Eilat 43a, Holon 5843045, Israel

3FELIX Laboratory, Radboud University, 7 Toernooiveld, 6525 ED Nijmegen, The Netherlands
4Institute for Molecules and Materials, Radboud University, 135 Heyendaalseweg, 6525 AJ Nijmegen, The Netherlands

5Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
6School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

7Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
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One-dimensional planar magnonic crystals are usually fabricated as a sequence of stripes intentionally or
accidentally separated by nonmagnetic spacers. The influence of spacers on shaping the spin-wave spectra is
complex and still not completely clarified. We perform detailed numerical studies of the one-dimensional single-
and bicomponent magnonic crystals comprised of a periodic array of thin ferromagnetic stripes separated by
nonmagnetic spacers. We show that the dynamic dipolar interactions between the stripes, mediated even by
ultranarrow nonmagnetic spacers, lead to a significant increase in the frequency of the ferromagnetic resonance
mode, while simultaneously reducing the spin-wave group velocity. We attribute these spectral deformations
to the modifications of dipolar pinning and shape anisotropy, both of which are dependent on the width of the
spacers and the thickness of the stripes, as well as changes with the dynamical magnetic volume charges formed
due to inhomogeneous spin-wave amplitude.
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I. INTRODUCTION

Periodic magnetic structures used as a medium for the con-
trolled propagation of spin waves (SWs) are called magnonic
crystals (MCs) [1,2]. The spectrum of an MC is similar to
any other structure featuring discrete translational symmetry
(e.g., photonic crystals [3] or phononic crystals [4]), and is
strongly influenced by the presence of magnonic band gaps,
in which there are no allowed magnonic states [5]. One of
the first attempts to study the propagation of SWs in periodic
magnetic structures was made by Elachi [6]. Recently, the
number of studies on this topic has surged and continues to
grow at a fast pace [7–9].

The fabrication process of artificial periodic structures
with characteristic dimensions on the nanoscale is very hard
to reliably control. It is especially difficult to control the
quality of the lateral surfaces and interfaces between adjacent
materials that constitute the MC. The roughness of lateral
surfaces in planar nanostructures is usually larger than that
of the top surfaces and bottom interfaces [10] mostly due
to the differences in their formation during fabrication. The
horizontal surfaces or interfaces of nanodots and nanostripes
are usually formed during the deposition of continuous layers
of the material, whereas the lateral (inter)faces are formed
by patterning techniques [11]. The roughness can affect the
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surface anisotropy due to geometrical factors [12] or because
of the changes in the chemisorption (oxidation) [13]. The
impact of the surface anisotropy on the SW pinning can be
different on lateral and on horizontal faces due to the large
difference in their areas for planar structures. Moreover, the
diffusion may occur between homogeneous materials, giving
rise to a transition layer with properties different from the
original constituents. This diffusion is proportional to the
concentration gradient at the interface, and so, it is most rapid
in structures prepared with sharp interfaces.

At the same time, most theoretical papers investigat-
ing the SWs in MCs consider structures with sharp inter-
faces [1,2,5,14–17]. However, in some cases, this assumption
is a severe idealization, and other models should be used
instead. For example, in Ref. [18], the coordinate dependence
of magnetic parameters of a transition layer was approximated
by the Jacobian elliptic sine function, and a strong depen-
dence of the magnonic spectrum and coefficients of reflection
and transmission of SWs upon the width of interfaces was
demonstrated. The spectrum of exchange-mediated SWs in
an MC with diffuse interfaces was also derived for a model
with cosinelike [19] and linear [20] profiles of the uniaxial
anisotropy at the interfaces. It was suggested that the perfor-
mance of magnonic devices employing MCs as a filtering ele-
ment may degrade as the thickness of the interfaces increases
due to the interdiffusion between constituent layers of MCs.

In the experimental realization of bicomponent
MCs [21–23], the interfaces between layers can suffer from
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FIG. 1. (a) Geometry of a single-component magnonic crystal
(MC) in the form of a 1D array of Py stripes, where the stripes’
width is aPy = 250 nm, and the lattice constant is a = aPy + l .
(b) Geometry of a bicomponent MC in the form of a 1D periodic
array of Co and Py stripes, where the stripes’ width is universally
aPy = aCo = 250 nm, and the lattice constant is a = aPy + aCo + 2l .
In both (a) and (b), stripe thickness is d , and the separation between
the stripes by nonmagnetic spacers (NMSs) is l . The stripes are
magnetically saturated along their axes. Spin waves (SWs) propagate
within the plane of the MC, perpendicular to the magnetization. The
unit cell used in calculations (periodically repeated along the y axis)
is marked by the semitransparent box.

oxidation, and so, a significant change of magnetic properties
near the edges can be expected. This is especially important
in the case of ferromagnetic metals because of their high
reactivity with oxygen [24], giving rise to oxides displaying
paramagnetic or antiferromagnetic properties at temperatures
above and below the Néel temperature, respectively. This
can lead to the formation of interfacial “spacer” regions
that are nonmagnetic altogether. The oxidation on lateral
surfaces can be different (usually enhanced) compared to
the horizontal surfaces, mostly due to the larger roughness
and the difficulties associated with preventing exposure
to oxygen (especially during the lithography process).
Therefore, it is reasonable to consider the planar MC with the
surface anisotropy on the edges of nanopatterned elements
(e.g., stripes, dots) but to neglect the impact of the surface
anisotropy on the top surfaces.

The purpose of our study is to investigate the influence of
such narrow nonmagnetic spacers between the edges of two
ferromagnetic stripes in “one-dimensional” magonic crystals
(1D MCs) on their magnonic band spectrum. The investi-
gated 1D MCs are formed by thin permalloy (and cobalt)
stripes, arranged in-plane as shown in Fig. 1. The term ‘one-
dimensional magnonic crystal’ stresses that the considered
planar structure is periodic in one of two in-plane dimensions
only [25–27]. Such a study is crucial to understand the physi-
cal mechanism responsible for the dynamical coupling of SWs
in MCs, and to explain the influence of pinning at the stripe
edges and dipolar couplings between constituent materials on
the magnonic band structure.

The geometrical factors and properties at surfaces and
edges of the ferromagnetic structure result in different SW
pinning conditions for the magnetization and SWs [28–31].
In the exchange dominated regime, it is usually justified to
consider the impact of the surfaces as a local effect which can
be accounted for by the introduction of a phenomenological
parameter. The SW pinning can originate from the surface
anisotropy with energy density Ks. The parameter Ks describes
the additional torque which acts on the magnetization vector at
the surface [30,32,33], regardless of the microscopic sources
of SW pinning pertaining to the changes of physical and
chemical states at the surface. This pinning mechanism, called
here exchange pinning only because of its local character,
is dominant in magnetic structures of small sizes or in thin
magnetic layers, where the long-range dipolar interactions
(induced by the presence of the surfaces) cannot compete with
the exchange interactions. The exchange pinning was also
extensively investigated in lattice models [34–36]. However,
the typical in-plane sizes of the planar magnonic structures
investigated experimentally are usually larger than tens of
nanometers and the nonlocal demagnetizing field is imper-
ative. The unavoidable dipolar pinning [30,31,37] is related
to the geometry of magnetic structure and the presence of
magnetic surface and volume magnetic charges in confined
geometries.

Unfortunately, the consideration of nonlocal dynamical
demagnetizing effects is computationally challenging for such
large structures [38–41]. This makes models assuming a
continuous distribution of the magnetization more suitable
to include the combined impact of the pinning, dipolar, and
exchange interactions on SWs both in terms of computational
efficiency and theoretical analysis [16,30,31,37,42].

The concept of SW pinning at the edges of the ferro-
magnetic stripes and holes has also been used to interpret
SW spectra in MCs. The pinning of dipolar origin has been
exploited in analysis of the SW spectra in single-component
MCs [43,44]. The influence of the surface anisotropy on
the SW dynamics has been studied in magnonic waveguides
based on antidot lattice [45,46]. A detailed study of the
interplay between the SW pinning and coupling strengths
at the interface between two ferromagnetic materials on the
spectrum of MCs can be found in Ref. [47].

The starting point of our investigation are the results of
Brillouin light-scattering measurements of the SW dispersion
relation in a 1D MC composed of Co and Py stripes, presented
in Ref. [48]. In this paper, the existence of magnonic band
gaps in a bicomponent MC was experimentally demonstrated.
This paper has become a point of reference for a number
of further theoretical and experimental investigations where
different aspects of SW dynamics in MCs were analyzed.
Nevertheless, the influence of a thin nonmagnetic layer sepa-
rating two metallic ferromagnetic stripes in bicomponent MCs
on the SWs spectra has not yet been investigated.

In our study we investigated how the structural parameters
of single- and bicomponent 1D MCs (see Fig. 1) affect the SW
pinning at the stripes’ edges. We checked how the width of the
spacer between the stripes in the periodic sequence influences
the low-frequency SW mode with in-phase oscillations of
the magnetization in the whole structure, i.e., at the ferro-
magnetic resonance (FMR), also called a fundamental mode.
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We focused on the structures most readily accessible for
experimental investigations, i.e., those in which the magneto-
dipolar coupling and pinning dominate over the exchange
interaction. Therefore, we investigated the SW dynamics us-
ing the model where the magnetic structures are described
by the spatial distribution of the magnetic parameters: the
saturation magnetization and exchange stiffness constant. We
considered the pinning which depends on the stripe geometry
(dipolar pinning) and the SW pinning resulting from the
surface anisotropy at the stripes’ edges (exchange pinning).
We showed that both are important factors that alter the
SW dispersion, modify the dynamical coupling between the
stripes, and influence the SW propagation. Our theoretical and
numerical studies of SWs in such structures allowed us to shed
light on this unexplored area.

We employ three numerical methods—the plane-wave
method (PWM), a finite element method (FEM), and a finite
difference time domain (FDTD) method—to calculate the SW
spectra in the frequency and time domain. These methods are
fully described in the next section (Sec. II). Then, we study
the influence of the separation between the stripes of the same
material in single-component MC on SW spectra and SW
pinning (Sec. III A). In Sec. III B we present the dynamical
coupling in bicomponent MCs, focusing on their influence on
the FMR frequency, formation of the magnonic bands, and
their dependence on the magnetic field. The paper ends with
Sec. IV where we summarize our results.

II. THEORETICAL MODELING

We consider two types of 1D MCs. The first one is a
single-component MC composed of a 1D periodic array of
Py nanostripes of equal width aPy = 250 nm [Fig. 1(a)], and
the second is a bicomponent MC composed of alternating Py
and Co stripes of equal width aPy = aCo = 250 nm [Fig. 1(b)].
The stripes have thickness d , infinite length (along the z axis),
and are either in touch or separated by air or by any other
dielectric nonmagnetic spacers (NMSs) of width l . The MC is
assumed to be magnetically saturated along the z axis, even
when the static external magnetic field H0 (pointing in the
same direction) is set to H0 = 0 [49].

The assumption that the magnetization is in its equilib-
rium configuration allows us to use the linear approximation
in SW calculations, which implies small deviations of the
magnetization vector M(r, t ) from its equilibrium orientation.
Thus, the magnetization vector can be split into its static
and dynamic parts M(r, t ) = Mz(r)ẑ + m(r, t ), and we can
neglect all nonlinear terms in the dynamical components of
the magnetization vector m(r, t ) in the equation of motion
defined below. Since |m(r, t )| � |Mz(y)|, we can assume also
Mz(y) ≈ MS (y), where MS (y) is the saturation magnetization
dependent on the y coordinate. We consider here monochro-
matic SWs in the fundamental mode (k = 0) which give the
main contribution to the FMR signal. To investigate the impact
of NMSs on the SW band structure, we additionally consider
that the SWs are propagating along the direction of periodicity
(k = kyŷ), which are more affected by periodic modulation
of the structure than SWs propagating in an oblique direc-
tion [50]. In both cases the phase and amplitude of SWs
are homogeneous in the z direction (kz = 0). Therefore, we

can reduce the problem to the x and y dimension, and
write m(r, t ) = m(x, y) exp(iωt ), where ω is the SW angular
frequency, ω = 2π f , and f is the frequency. The dynamics of
the magnetization vector m(x, y, t ) with negligible damping is
described by the stationary Landau-Lifshitz equation:

iωm(x, y) = −|γ |μ0[MS (y)ẑ + m(x, y)] × Heff(r), (1)

where γ is the gyromagnetic ratio, μ0 is the permeability of
vacuum, and Heff denotes the effective magnetic field acting
on the magnetization.

The effective magnetic field Heff is in general the sum of
several components. Here, we will consider four terms:

Heff(r, t ) = H0ẑ + Hex(r, t ) + Hdm(r, t ) + Haniẑ. (2)

The second term is the exchange field, assumed to have the
form

Hex(r, t ) = ∇ ·
(

2A(y)

μ0M2
S (y)

∇m(r, t )

)
, (3)

where A is the exchange stiffness constant [51]. The third
term of the effective field is the demagnetizing field. In
the linear approximation, in a similar manner to the mag-
netization vector, it can be decomposed into its static and
dynamic components, Hdm(r) and hdm(r, t ), respectively. In
the case of infinitely long stripes saturated along their axis,
the static demagnetizing field along this axis vanishes. The
time and space dependence of the dynamic component of the
demagnetizing field is assumed to have the form hdm(r, t ) =
hdm(x, y) exp(iωt ). This can be calculated in either the re-
ciprocal or real space from Maxwell’s equations within the
magnetostatic approximation [33], and then implemented in
Eq. (1) [52,53].

The magnetic parameters A and MS are periodic functions
of the position along the y axis, with a period a = aPy + l
or a = aPy + aCo + 2l for single-component and bicomponent
MCs, respectively. Thus, the Bloch theorem holds, asserting
that a solution can be represented as a product of a plane-wave
envelope function and a periodic function m̃ky (x, y) along y
with the period a:

m(x, y) = m̃ky (x, y)eikyy, (4)

where ky is the Bloch wave vector of SWs propagating along
the y axis, which can be limited to the first Brillouin zone. To
calculate the magnonic band structure and amplitude of SWs
in the considered MCs, we employed the PWM and FEM to
solve the eigenproblem obtained from Eq. (1) with the use of
the Bloch theorem [Eq. (4)].

In the FEM, the equations are solved on a two-dimensional
discrete mesh in real space [in the plane (x, y)] limited due to
the Bloch theorem to the single unit cell (marked by the gray
box in Fig. 1). In this paper, we use one of the realizations
of the FEM developed in the commercial software COMSOL

Multiphysics version 4.2. This method has already been used
in calculations of magnonic band structure in thin 1D MCs,
and their results have been validated by comparing with
micromagnetic simulations and experimental data [48,53,54].
The detailed description of the FEM in application to calcu-
lations of SW spectra in MCs can be found in Refs. [53,55].
The exchange pinning was introduced in the FEM calculations
by forcing the boundary conditions for dynamic component
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of the magnetization (my = 0 and dmx/dy = 0) [33] on the
lateral sides of stripes.

In the PWM, all periodic functions of the position m̃ky (y),
MS (y), A(y) in Eqs. (1) and (4) are transformed into reciprocal
space using the 1D Fourier transformation, which leads to an
algebraic eigenvalue problem [52,56]. Then, standard numer-
ical routines are used to find its eigenvalues and eigenvectors.
In the PWM, it is necessary to assume uniform magnetic
field and magnetization across the sample’s thickness. Thus,
in the calculations we use the value of hdm from the top
surface of the MC. This approach gives correct results for
the Damon-Eshbach geometry considered in this paper [57].
The representation of the dynamic components of the magne-
tization vector as a superposition of plane waves forces one
to treat an MC as a continuous medium with eigenfunctions
defined at its every point. Thus, it is necessary to define the
artificial magnetic material also for the NMSs, which will not
support the existence of SWs in NMSs for the considered
frequency range. We have shown in Ref. [45] that this can
be done by assuming, for the NMSs, small values of MS

and a (bulk) uniaxial magnetic anisotropy field parallel to
the static comment of magnetization. The small value of MS

reduces the amplitude of any nonphysical solutions almost
to zero whereas the high anisotropy rises significantly their
frequencies. As a result, any spurious solutions found in
NMSs have the frequencies far above the considered range
and do not affect the modes in magnetic material. However,
the side effect of this approach is that large bulk anisotropy
(in the nonmagnetic material) can pin the SWs at the lateral
interfaces of the magnetic stripes. Therefore, by changing the
value of the artificial magnetic bulk anisotropy in NMSs, we
can tune the pinning of SWs reaching the limits of fully pinned
and almost unpinned SWs (with nonphysical solutions pushed
to much higher frequencies). The control of the spin-wave
pinning in PWM is difficult, particularly in the regime of
weak pinning. In this method, the actual value of surface
anisotropy KS cannot be precisely determined. It can be done
only indirectly by comparing the outcomes of PWM with the
results of the other methods.

In the FDTD method, the considered system is discretized
using regular cuboids of fixed size, and then the full Landau-
Lifshitz equation (without linearization) is numerically solved
across the mesh, assuming a uniform magnetization and ef-
fective field within each cell. We employed object-oriented
micromagnetic framework (OOMMF) [58], with the imple-
mentation of either one- [59] or two-dimensional [60] periodic
boundary conditions in order to model an isolated stripe or an
MC, respectively. The FDTD calculations were performed in
the absence of exchange pinning.

In all mentioned techniques, the dipolar pinning results
from the presence of the dynamic demagnetizing fields which
are included directly in these calculations. Therefore, we are
not introducing the dipolar pinning explicitly.

Formally, the strength of spin-wave pinning is strictly
related to the boundary conditions for dynamical components
of the magnetization vector [30,32]. The energy density of
precessing magnetization can be different at the surface due to
various local effects (expressed by the surface anisotropy KS)
or because of the magnetic charges induced by the presence of
the surface (resulting from nonlocal dipolar interactions [61]).

This surface density of energy can be related to the effective
field and the additional torque which acts on the magneti-
zation across the surface. The surface torque Tsurf must be
compensated for by the torque related to the truncation of the
exchange interaction at the surface. The boundary conditions
for magnetization, called Rado-Weertman boundary condi-
tions [32], can be derived from the balance of these surface
densities of torques:

M × μ0l2
ex

∂M
∂n

+ Tsurf = 0, (5)

where the derivative ∂/∂n is taken along the unit vector n
normal to the surface. The parameter lex =

√
2A

μ0M2
S

denotes

the exchange length. In the absence of the torque Tsurf , the
exchange interactions prefer to unpin the magnetization on the
surface ∂M

∂n = 0. The torque Tsurf forces the reorientation of
the magnetization (or changes the amplitude of magnetization
dynamics) close to the surface, which induces the volume
charges and increases the exchange energy at the cost of
the surface charges and surface energy density. This process
results in the magnetization pinning. Thus, the magnetization
pinning is caused both by the local effects (existing even
in the absence of dipolar interaction) and long-range dipolar
interactions. We call these mechanisms exchange pinning and
dipolar pinning respectively.

The Rado-Weertman boundary condition for the dynamic
component of the magnetization normal to the lateral faces of
the ith stripe can be expressed by

ai
dmy(x, y)

dy
∓ p my(x, y)

∣∣∣∣
y=y+,y−

= 0, (6)

where ai = aPy, aCo is the width of the ith stripe and y+,
y− are the positions of the right and left edges of the stripe
(y+ > y−). The symbol p denotes the dimensionless pinning
parameter, where the limiting cases p = 0 ( dmy

dy = 0) and
p → ∞ (my = 0) correspond to completely free and totally
pinned dynamic component my at the lateral edges y = y+, y−,
respectively. For the isolated stripe of small aspect ratio
(d/ai � 1) the parameter p may be approximated as [30,37]

p =
2π

(
1 − 4KS,i

μ0M2
S,id

)
d
ai

(
1 + 2 ln

( ai
d

) + ( lex,i

d

)2) . (7)

The symbol KS,i represents the surface anisotropy with respect
to the direction normal to the lateral faces of the stripe: n =
±ŷ. The large and positive value of KS,i � μ0M2

S d/4 results
in the strong exchange pinning of SWs. In the absence of sur-
face anisotropy (KS,i = 0) the SW pinning (7) is determined
by the dipolar interactions only. Since the dipolar pinning for
a magnetic stripe is determined by the geometrical parameters
(width ai and thickness d), it is significantly reduced when the
stripes are downsized below the exchange length:

√
d ai �

lex,i [31]. When the dimensions of the stripe are larger than
exchange length, the dipolar pinning is enhanced with the
increase of the ratio: ai/d .

The dipolar pinning is further changed by the dipolar inter-
action between the stripes, which depends in our structures
on the width of the NMSs l . When the stripes merge into
continuous magnetic layer (l → 0), the spin-wave pinning
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will disappear and we will observe the increase of the FMR
frequency towards the FMR frequency of the continuous layer.
This suggests that by the reducing of l , the change of the
SW pinning by the adjustment of geometrical parameters is
an important factor for shaping the spectrum of considered
periodic structures.

In our numerical model [based on Eqs. (1) and (2)] the
dipolar pinning is directly included via the dynamic demag-
netizing field hdm(r, t ). Therefore, the effect of the dipolar
pinning is reproduced in the outcomes of numerical methods
PWM, FEM, and FDTD. However, the exchange pinning
resulting from nonzero surface anisotropy (KS,i 	= 0) is an
interface effect and has been introduced manually. We focus
here on two limiting cases: (i) KS,i = 0, when the SW pinning
is governed only by dipolar effects, and (ii) full exchange
pinning, when the SWs are completely pinned at the lateral
faces of the stripes (KS,i � μ0M2

S,id/4) and the dipolar effects
can affect the amplitude of SW inside the stripes only.

III. RESULTS AND DISCUSSION

A. Single-component magnonic crystals

In this section, we will study the SW spectra in an array of
stripes made of permalloy (Py) only [Fig. 1(a)] [48,62–65].
We assume Py to have standardized values of spontaneous
magnetization (MS,Py = 658 kA/m) and exchange constant
(APy = 11 pJ/m) as obtained experimentally in Ref. [48].
The gyromagnetic ratio is assumed to be |γ | = 1.946 × 1011

(rad/s)/T. The exchange length of Py is lex,Py = 6.4 nm,
and so the cell size adopted in FDTD calculations is set to
(30 × 5 × 5) nm3.

Let us begin by considering the impact of the dipolar
pinning on the SW spectrum. Hence, initially, we assume
KS,Py = 0. In Fig. 2(a) we present the frequency of the fun-
damental SW mode as a function of the stripe thickness d for
three MCs differing in the width of NMSs (l = 50, 5, and 1
nm), calculated by the FEM. For the widest air gap the FMR
frequency f increases monotonously with d , while for small
l the frequency f is almost independent of d , as expected
for a continuous magnetic film. By inspection of Eq. (7),
where the influence of the y component of the dynamical
magnetization on SW pinning is only taken into account, we
can notice that the increase of thickness initially enhances the
dipolar pinning p (i.e., for d smaller or comparable to the
exchange length lex,Py), while for larger thicknesses [as shown
in Fig. 2(a)] it slowly reduces the value of p with increasing
d , see Fig. 2(b), that shows p(d ) for an isolated stripe. This
effect is also visible in the SW profiles in stripes comprising
an MC, which are presented in the insets of Fig. 2(a). We
expect intuitively that the weakening of the SW pinning
should result in a downward frequency shift because of the
weaker confinement of the SW modes within the relatively
narrow stripes. However, the trend observed in Fig. 2(a) is
opposite. It can be explained using the Kittel formula for the
FMR frequency for an isolated stripe [33]:

ω2 = [ω0 + (Nx − Nz )ωM][ω0 + (Ny − Nz )ωM], (8)

where ω0 = |γ |μ0H0, ωM = |γ |μ0MS,Py, and Nx, Ny, and Nz

are the effective demagnetizing factors with respect to the out-
of-plane direction, along the periodicity direction and along

FIG. 2. (a) The dependence of the frequency of fundamental SW
mode (ky = 0) on the thickness d of Py stripes in a single-component
MC. The width of the NMSs between the stripes l is fixed to 1, 5,
or 50 nm. The width of the stripes aPy is equal to 250 nm. The
calculation was done using the FEM for H0 = 0 in the absence of the
surface anisotropy (i.e., absence of exchange pinning). To illustrate
the impact of the thickness d on the SW pinning, we show selected
profiles of the in-plane component of the SW amplitude my in the
cross section of one stripe. (b) Pinning parameter p for Ks = 0 (in the
limit of an isolated stripe: l → ∞) as a function of the thickness d .
In the realistic range of d , considered in (a), an increase of d makes
the SW gradually unpinned, as also illustrated in the SW profiles
shown in (a). The dashed vertical line in (a) marks the value of
d = 30 nm for which the further results in Fig. 3 are shown. The
inset in (b) presents the dependence of the frequency of fundamental
mode on demagnetizing factors.

the external magnetic field, respectively. For the infinitely
long stripes, Nz = 0 and Ny = 1 − Nx. The gradual increase
of the thickness d from 0 to ai results in the change of the
demagnetizing factors in the range 0 → 0.5 for Ny and 1 →
0.5 for Nx. From the Kittel formula (8), we find that increasing
the thickness of an initially thin stripe (Ny � Nx) results in a
rapid increase of the FMR frequency, as shown in the inset
of Fig. 2(b). This understanding can be transferred to the MC
composed of the dipolar interacting stripes shown in Fig. 2(a)
for l = 50 nm. However, the stronger dipolar interactions
between stripes [as observed in Fig. 2(a) for narrow air gaps:
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FIG. 3. The dependence of the frequency of the fundamental SW
mode (ky = 0) on the separation between Py stripes, l , for H0 = 0.
The stripe separation is scaled logarithmically. The red full and
empty dots are the results of FEM calculations, the blue squares
are the results of FDTD calculations, and the lines correspond to the
PWM results for two limiting cases which concern the SW pinning at
the edges of stripes: absence of exchange pinning (KS,Py = 0), solid
line, and strong exchange pinning (KS,Py � μ0M2

S,Pyd/4), dashed
line. The insets show the distribution of the in-plane component of
SW amplitude my in the cross section of one stripe for l = 1, 5, and
50 nm. The calculations were done for the stripes’ thickness d and
width aPy equal to 30 and 250 nm, respectively.

l = 1 or 5 nm] reduces both the dipolar pinning (see SW
profiles) and the FMR frequency. The observed flattening
of the f (d ) dependence with decreasing l , approaching the
case where f is close to independent of d for l = 1 nm and
d > 5 nm, can be explained when we notice that at FMR
frequency (i.e., the frequency of fundamental mode at ky = 0)
the considered system reaches the metamaterial limit [66,67].
In this limit the 1D MC with small air gaps can be treated as
a homogeneous thin film with effective parameters character-
izing the anisotropy and magnetization saturation.

To explain fully the effect of a dynamic coupling between
the stripes, we performed systematic numerical simulations of
the FMR frequency (i.e., the frequency of fundamental mode)
f as a function of l (the width of the NMSs). The f (l ) depen-
dencies calculated in the range 1 nm < l < 1 μm with H0 = 0
are presented in Fig. 3. The data showing FMR frequencies
indicated by the red-filled dots, blue-filled squares, and solid
black line were calculated using FEM, FDTD, and PWM
methods respectively, in the absence of surface anisotropy
on the lateral faces of the Py stripes (KS,Py = 0), where the
exchange SW pinning is not active. The set of results marked
by empty dots and dashed lines were calculated using FEM
and FDTD calculations respectively, for the alternative limit-
ing case in which there is strong surface anisotropy (KS,Py �
μ0M2

S,Pyd/4) i.e., the SWs are exchange pinned.
Before providing physical interpretation of the results, we

compare the results of the FEM, FDTD, and PWM methods.
The results obtained using the FDTD (blue-filled squares)

are in excellent agreement with the results obtained from
the FEM (red-filled dots) when no exchange pinning is in-
cluded. In the PWM calculations, the SW pinning appears
due to the high value of the fictitious anisotropy field used
in NMSs. To avoid introduction of this artificial SW pinning
in the PWM, we reduced the bulk anisotropy field inside the
NMSs, which guarantees the almost full unpinning of the
fundamental mode. By artificially inserting a bulk anisotropy
field of strength 0.7 T within the NMSs, we obtain excellent
agreement between the FMR frequencies calculated using
PWM with the FMR frequencies obtained with the aid of
the FEM and the FDTD method. This agreement is sustained
as well for larger separation l (the difference between PWM
and FEM calculations is only 0.15 GHz at l = 900 nm).
In the case of strong exchange pinning, we can easily ob-
tain the corresponding result from FEM (red-open dots) and
PWM (black dashed line) calculations. To find the effect of
the dynamic magnetization pinning in the PWM, we have
to use the significantly higher value of anisotropy field for
NMSs [45,68]. While this increase does not increase the SW
pinning (as seen by the lack of change in the FMR frequency),
the anisotropy can impact the convergence of the PWM. The
differences between FEM and PWM outcomes become 0.29
and 0.15 GHz at l = 1 and 900 nm, respectively, and are
related to the assumptions made in the PWM (i.e., uniform
dynamics across the thickness and demagnetizing field taken
from the top surface of the MC).

For both boundary conditions (Fig. 3) we observe a sub-
stantial increase of the FMR frequency upon increasing the
width of the NMSs, in accordance with previous studies [43].
The frequency increases up to 8.12 GHz (8.44 GHz in the
calculations with a pinned dynamic magnetization) at l =
900 nm. Interestingly, the saturation of the dependence f (l ) is
approached when the stripe separation l becomes larger than
the stripes’ width ai. The f (l ) dependence spans the range
of values between two limits for which analytical solutions
are known. These are l = 0 and l → ∞, i.e., a thin uniform
ferromagnetic film [69,70] and an isolated stripe [37]. The
FMR frequencies in these limits can be estimated from the
Kittel formula (8). For a thin film (l = 0) the demagnetiz-
ing field is uniform, and so Nx = 1 and Ny = Nz = 0. With
H0 = 0 this gives ω = 0. However, the demagnetizing field is
nonuniform in a finite ferromagnetic body of nonellipsoidal
shape, and so the demagnetizing factors in general become
spatially varying in general [71]. Nevertheless, in typical
interpretations of experimental results, the FMR frequency
for stripes is estimated using fixed demagnetizing factors
within Eq. (8) [65,72–75]. However, the difference between
the f (l ) dependencies for fully pinned dynamical components
of the magnetization and for the absence of exchange pin-
ning at the stripe edges suggests that neither the dynamical
surface charges, nor the pinning parameter p, nor constant
demagnetization factors are sufficient to describe dynamic
dipolar coupling in MCs. The change of the FMR frequency
with l for the fully pinned case points at the non-negligible
contribution of the dynamic volume magnetic charges formed
due to nonuniform amplitude of SWs inside the stripes.

In order to further explain the dependencies shown in
Fig. 3, and in particular to ascertain the relative roles of
the dynamic magnetization pinning and the stray fields from
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FIG. 4. (a),(b) The amplitude of the my and mx components of the
dynamic magnetizations across the width of the stripe, respectively,
calculated at the FMR frequency as identified from Fig. 3. These
profiles were obtained from the FDTD calculations (in the absence
of exchange pinning and for d = 30 nm, aPy = 250 nm). The mag-
netization profiles shown correspond to different separation l values,
as indicated, ranging from l = 5 nm to l = ∞.

neighboring stripes on the FMR frequency, we calculate the
SW amplitude across the width of the stripe at resonance.
The results are presented in the inset of Fig. 3, which shows
that as the stripe separation increases, the amplitude becomes
increasingly concentrated towards the center of the stripe. The
finite width of the stripe leads to a symmetrical nonuniform
magnetization profile across the stripe’s width. The normal-
ized fast Fourier transform of the dynamic x and y components
of magnetization in time domain at the FMR frequency are
presented in Figs. 4(a) and 4(b), respectively, as a function of
the interstripe separation, as calculated from the FDTD.

In the limiting case of l = 0 (and with nonzero H0),
the magnetization profile across the infinite continuous film
would be uniform at resonance. Upon setting l = 5 nm (the
smallest stripe separation that can be implemented in our
FDTD calculations), the mode-amplitude distribution in the
plane of the stripe becomes sinusoidal-like [Fig. 4(a)], with a
characteristic maximum at the center of the stripe. This arises
from the reduced influence of the effective dipolar pinning
in this region, and also from the symmetry of the problem.
As we move closer to the edges, the influence of the SW
pinning increases, leading to more nonuniform magnetization
and a reduced amplitude of precession. Increasing l reduces

the influence of the stray fields originating from neighboring
stripes, and so the mode profile tends towards that of an
isolated stripe (l = ∞).

The amplitude of the out-of-plane magnetization compo-
nent mx at FMR frequency [Fig. 4(b)] has a slightly different
profile than that of my. In particular, we see that the out-of-
plane profile has a characteristic ridge at the edges of the film.
Also, the amplitude of my is about ten times larger than the
amplitude of mx for considered dimensions of stripes, and thus
its influence on the dynamical coupling between the stripes is
minor.

The observed features can be understood in terms of the in-
terplay between the lateral quantization of the SW modes and
the dynamic magnetization pinning. Due to the finite width
of the stripe, it is impossible to excite the ky = 0 (i.e., strictly
uniform) mode. Instead, a laterally pinned Damon-Eshbach
n = 1 mode is excited, where n is the antinode number. This
leads to the characteristic bell-shaped profile seen in both my

and mx. Close to the edge of the stripe (about 15 nm away),
dynamic magnetization pinning begins to dominate in the
plane of the film. This inhibits the magnetization oscillation
in the plane of the film, and so, my continues to decrease. In
contrast, the local inhibition of oscillation in the plane of the
film forces the oscillation of the out-of-plane component of
magnetization mx to increase. This feature importantly reveals
that the dynamic pinning originating from the edges of the
stripe is limited in influence to a lateral range of ≈ d

2 , and so
does not play a significant role in the variation of the FMR
frequency observed in Fig. 3. We speculate that, in principle,
one could attempt to explain this feature in terms of the spatial
variation of the local susceptibility tensor [76,77], although
this is beyond the scope of the present paper.

The features observed in Fig. 4 also explain the dependen-
cies of the FMR frequency shown in Fig. 3. With decreasing
l , the stray magnetic fields originating from all the other
neighboring stripes influence the SW dynamics in the given
stripe by changing the internal dynamic magnetic field. The
nonuniform magnetization profile originating from the lateral
SW pinning is always present but is counterbalanced by
these stray fields, which promote a uniform magnetization.
By imposing artificially pinned dynamic magnetization at the
edges of an isolated stripe, the stray field generated from the
stripe (at the edges or volume) is reduced in strength, and
hence the FMR frequency of the bulk of the stripe increases
slightly. Now, as l decreases, the artificially pinned dynamic
magnetization reduces the impact of the uniformity induced
by the stray fields, and the magnetization across the stripe
width at resonance retains significant nonuniformity. This is
apparent in the SW amplitudes shown in the inset of Fig. 3
for l = 1 nm. Thus, the difference in the FMR frequencies,
between the case of the fully (exchange) pinned SWs and
the case where there is no artificial (exchange) SW pinning,
increases with decreasing l , in accordance with the trend
observed in Fig. 3.

It is clear that the main contribution to the change of the
FMR frequency observed in Fig. 3 is the lateral SW pinning
and an inhomogeneous amplitude distribution of the FMR
mode appearing as soon as the separation between Py stripes
is introduced. This separation leads to the nonuniformity
of the internal magnetic field, due to the stray fields from
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neighboring stripes and the lateral quantization of the resonant
mode.

We can also draw some conclusions for 2D MCs
with dots separated from the matrix material with some
NMSs [22,78,79]. Because the demagnetizing fields along
all the principal directions can be comparable due to finite
thickness and finite in-plane extension, the demagnetization
effects (shape anisotropy) are expected to be much weaker
than those in 1D MCs. In contrast, the dynamical coupling
via the stray field and the SW pinning influence, although
weak, should still persist. The change of SW pinning due to
the dipolar interaction between dots in 2D MCs should be then
observed even for smaller separation between dots than for the
case of stripes in 1D MCs. Further studies (beyond the scope
of this paper) are required to quantitatively treat this problem.

B. Bicomponent magnonic crystals

Bicomponent MCs with periodicity in one and two dimen-
sions were investigated theoretically and experimentally in
Refs. [15,16,22,23,48,52,57,64,80]. While many interesting
properties have been studied, the impact of the stripe sepa-
ration and SW pinning at the stripe edges on the SW spectra
is not well understood. Here, we study an MC composed of an
array of Co and Py stripes [Fig. 1(b)]. Again, the width of the
stripes is 250 nm, and the thickness is 30 nm. The spontaneous
magnetization and exchange constant of Co and Py are equal
to those presented in the experimental paper Ref. [48]. For
Co, they are MS,Co = 1150 kA/m and ACo = 28.8 pJ/m and
for Py, the parameters are the same as those defined in the
previous section. We introduce the NMSs of varied width l
between Co and Py stripes.

With the stripes in contact (l = 0), the first (fundamen-
tal) mode at H0 = 0 is a quasiuniform mode spread across
the whole MC [80]. The next series of modes form a pat-
tern of standing waves in Py with reduced amplitude in
Co [48,52,80]. This behavior persists when the NMS is in-
troduced between Py and Co (see mode profile in the inset of
Fig. 5). The dependence of the fundamental mode frequency
on the width of the NMS is shown in Fig. 5 with a thick red
solid line. We have used KS,Py = 0 on the Co/Py interfaces
here. We observe a dependence similar to that obtained for the
single-component MC (for ease of comparison, the solid and
dashed lines are taken from Fig. 3). We see that the function
f (l ) in the bicomponent MC (thick red line) merges at large
l with the fundamental mode in Py stripes for KS,Py = 0
(solid black line). This result is obvious as at the limit of
well-separated Co and Py stripes, the frequency of modes
concentrated in the Py stripes will be the same as in isolated
Py stripes. As l decreases, the frequency of the fundamental
mode in the Co/Py MC decreases slower than in the Py MC,
and at l values between 30 and 250 nm, it stays even above
the fundamental mode of the Py MC for KS,Py � μ0M2

S,Pyd/4
(dashed black line—strong exchange pinning). With the width
of the NMS dropping below 30 nm, the Co/Py fundamental
mode again moves below the fundamental mode of single-
component MC with large KS,Py, close to the line for Py
MC with KS,Py = 0 (solid black line), and finally approaches
0 when l → 0. The Co stripes are characterized by higher
magnetization saturation MS and therefore the SWs occupy

FIG. 5. (a) The dependence of the frequency of the fundamental
mode (FMR frequency) in the 1D bicomponent (Co/Py) MC on the
separation between the Co and Py stripes, l , calculated with the
FEM (solid red line). For comparison, the frequencies of the FMR
modes of the single component MC composed of Py stripes in the
absence of exchange pinning (Ks = 0) and with exchange pinned
SWs at the edges are also shown with dashed black and solid black
lines, respectively. The amplitude profile of the fundamental SW
mode in the Co/Py MC with a 2-nm-wide NMS, for H0 = 0, is
shown in the inset. (b) The dispersion relations characterizing the two
lowest bands for the bicomponent MC (red lines) and the lowest band
for single-component MC (black line) in the absence of exchange
pinning. The dispersion relation for the single-component MC was
folded into the first Brillouin zone of the bicomponent MC due to
our selection of a unit cell which was composed of two Py stripes.
We fixed the width of the NMSs to l = 2 nm. The thickness d and the
widths of stripes aPy = aCo are equal to 30 and 250 nm, respectively,
both in (a) and (b).

them weaker in the bicomponent MC for the frequencies
lower than the FMR frequency of the isolated Co stripe, given
by Kittel formula (8). In fact, the excitation of SWs in Co
stripes inside the Co/Py MC is possible only due to the
neighborhood of Py stripes. The penetration of SWs into Co
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stripes’ strength, in turn, is the dynamic interaction between
the Py stripes [64].

In the long-wavelength limit (at k ≈ 0) when l = 0, the
bicomponent MC can be regarded as a homogeneous material
with effective properties (i.e., effective magnetization and
exchange constant), and thus its fundamental mode frequency
can be also described by Eq. (8).

The last observation can be used to explain the experimen-
tal results presented in Ref. [48] for a 1D bicomponent MC
composed of Co and Py stripes. In the experimental report, the
frequency of the fundamental mode at the Brillouin-zone cen-
ter is nonzero at H0 = 0. However, with a 2-nm-wide NMS,
Fig. 5 shows that the first mode (of frequency ∼2.5 GHz) is
located at the center of the Brillouin zone. Such a minute
separation (of around 1% of the width of the stripe) may
plausibly occur in the sample during its fabrication. Moreover,
if the sample is exposed to air, oxidation can introduce some
surface anisotropy at the stripe edge [24,81–84] resulting in a
further shift in the frequency of the fundamental mode due to
dynamic magnetization pinning. Hence, the shift in frequency
due to the NMSs and oxidation may explain the disagreement
between numerical results and experimental data found in
Ref. [52]. In actual fact, the 1-nm-wide gap was introduced
in the micromagnetic simulations in Ref. [85], where it was
admitted that misalignment during the two-step lithographic
process used in the preparation of bicomponent samples may
result in such a gap at the interface of two alternating magnetic
media.

After our discussion of the variation of the FMR frequency
with l , we also study the dispersion relation f (k) of SWs
in bicomponent MCs. To illustrate the relation between the
f (k) dependencies for single- and bicomponent MCs, we
plotted them together in Fig. 5(b) for one selected separation
between the stripes l = 2 nm. The dispersion relation for the
single-component MC is folded into the first Brillouin zone of
the bicomponent MC because of our selection of a unit cell
composed of two Py stripes. We can notice that the artificial
crossing of the dispersion branches for the single-component
MC is transformed into an anticrossing for the bicomponent
MC at the edge of the Brillouin zone. Therefore, the bands
in the bicomponent MC are in general narrower than those
characterizing the single-component MC. We can expect that
the width of the first band [� f = f (k = π/a) − f (k = 0)]
will decrease with increasing l , because for well-separated
stripes, the dispersion relation is flat [ f (k = π/a) = f (0)]
due to the lack of interaction between the stripes. Indeed, this
property is visible in the results of the calculations presented
in Fig. 6(a). It can be seen that the change of SW frequen-
cies resulting from the separation between stripes [ f (l →
∞) − f (l = 200 nm)] decreases as the wave vector increases,
from 8.3 GHz for k = 0 to 0.57 GHz at the Brillouin-zone
boundary. This is despite the fact that the increase in l leads
to the extension of the lattice constant (we keep the stripes’
width fixed) and thereby to the shift of the Brillouin-zone
boundary to smaller wave numbers k. The weak sensitivity
of the SW frequency on l at the Brillouin-zone boundary can
be attributed to the phase variation of the modes. Indeed, for
this wave number, the SW phase changes by π between the
nearest unit cells, and so, the nodes of the SW amplitude are
present at the border of the unit cell.

FIG. 6. (a,b) Dispersion relation of SWs in the first Brillouin
zone in a bicomponent MC with H0 = 0: (a) for fixed thickness
d = 30 nm and three separations between the Co and Py stripes—the
solid, dashed, and dotted lines correspond to l = 0, 10, and 200 nm,
respectively; (b) for a fixed NMSs’ width of l = 10 nm, the solid,
dashed, and dotted lines correspond to the MC’s thicknesses of
d = 10, 20, and 30 nm, respectively. For every separation value in
(a), the respective MC has a different lattice constant, and so, the
Brillouin-zone boundary also appears at a different wave number.
(c) The fundamental mode frequency at k = 0 in dependence on the
external magnetic field for the three NMSs’ widths l = 0, 10, and
200 nm (solid, dotted, and dashed lines, respectively).

The SW spectrum of the considered MC is plotted as a
function of the bicomponent MC’s thickness (d) in Fig. 6(b).
The width of the NMS is fixed to l = 10 nm. Increasing the
film thickness results in a strong bending of the dispersion
curve of the fundamental mode. This result can be explained
in terms of the strength of interaction between the stripes.
By definition, the exchange interaction is present only in
magnetic media and so the only interaction that creates the
SW spectrum in the considered case of an array of stripes
separated by NMSs is magnetostatic in nature. Increasing the
separation of the magnetic stripes, as well as decreasing the
thickness of the film, reduces the magnetostatic interaction
between them. Hence, the modes become less dispersive, and
the magnonic band becomes flatter, as can be observed in
Figs. 6(a) and 6(b). In both cases, the change follows the same
trend: upon increasing l , the frequency at k = 0 (bottom of
the first magnonic band) is increased, while the increasing d
shifts the frequency at k = π/a (the top of the first magnonic
band) to higher values. This shows how the width of the
first magnonic band can be effectively changed merely by
introducing structural changes in bicomponent MCs.
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Finally, we study the fundamental mode as a function of
the external magnetic field. The results of the calculations
are shown in Fig. 6(c) for the bicomponent MC of 30 nm
thickness and three NMS widths, which correspond to Co and
Py stripes in direct contact (solid black line), separated by
10 nm (dashed-red line) and by 200 nm (dotted-blue line).
We see that the influence of l on the fundamental mode
decreases with increasing H0 from 7.93 GHz at H0 = 0 to
0.66 GHz at 0.5 T [we are referring here to the difference
f (l = 200 nm) − f (l = 0)]. This shows that in 1D MCs the
contribution of the external magnetic field prevails over that
of the dynamic coupling between separated stripes, and that
the fundamental mode is most sensitive to the NMS’s width at
fields where softening of the modes happens.

IV. CONCLUSIONS

In summary, we have numerically studied the spin-wave
spectra of planar 1D magnonic crystals formed by peri-
odic arrays of one (and two kinds) of thin ferromagnetic
stripes separated by a nonmagnetic spacers. The influence of
the stripe’s thickness and nonmagnetic material’s width on
the ferromagnetic resonance frequency has been investigated
fully, with the most significant changes found at small sepa-
rations between the stripes. Interestingly, these changes result
not only from the decreasing dipolar interaction between the
stripes with increasing separation width, but also are attributed
to the lateral pinning of spin waves at the stripe edges. The
pinning of the dipolar origin is always present and depends
on the shape of the stripe cross section, but the ferromagnetic
resonance frequency is additionally influenced whenever the
surface magnetic anisotropy is present at the stripe edges.
Then the influence of the volume magnetostatic charges on

spin-wave frequency is also revealed. We roughly estimated
that the spin-wave pinning at the edges does not play a
significant role, as the nonmagnetic spacers’ width is larger
than the stripes’ width.

In bicomponent magnonic crystals we have shown that
a similar dependence on the nonmagnetic spacers’ width
exists. We have also studied the influence of the width of the
nonmagnetic spacer on the width of the first magnonic band.
We have shown that both increasing the nonmagnetic spacers’
width and decreasing the thickness of the magnonic crystal
decrease the dynamic coupling.

The results obtained here can help in the interpretation of
experimental results and have significant impact for appli-
cations involving magnonic crystals, as they show how the
effective response of the single- and bicomponent magnonic
crystals to a homogeneous microwave field can be modified
by spin-wave pinning. Thus, these properties are important
for the designing of magnetic metamaterials and magnonic
devices.
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