71 research outputs found

    Gathering dust : A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Aims. We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods. We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 ÎŒm; the final size and mass estimates are based on the observations at 250 ÎŒm that have an effective spatial resolution of ~170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results. Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from ~1.1 × 10 3 to 1.4 × 10 4 M. The GDCs have effective temperatures of ~13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes ~16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 10 6 M. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds.Peer reviewe

    Resolving Giant Molecular Clouds in NGC 300: : A First Look with the Submillimeter Array

    Get PDF
    Christopher M. Faesi, et al, 'RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY', The Astrophysical Journal, Vol. 821(2) (16 pp), April 2016. doi:10.3847/0004-637X/821/2/125. © 2016. The American Astronomical Society. All rights reserved.We present the first high angular resolution study of giant molecular clouds (GMCs) in the nearby spiral galaxy NGC 300, based on observations from the Submillimeter Array (SMA). We target eleven 500 pc-sized regions of active star formation within the galaxy in the CO(J=2-1) line at 40 pc spatial and 1 km/s spectral resolution and identify 45 individual GMCs. We characterize the physical properties of these GMCs, and find that they are similar to GMCs in the disks of the Milky Way and other nearby spiral galaxies. For example, the GMC mass spectrum in our sample has a slope of 1.80+/-0.07. Twelve clouds are spatially resolved by our observations, of which ten have virial mass estimates that agree to within a factor of two with mass estimates derived directly from CO integrated intensity, suggesting that the majority of these GMCs are bound. The resolved clouds show consistency with Larson's fundamental relations between size, linewidth, and mass observed in the Milky Way. We find that the linewidth scales with the size as DeltaV ~ R^(0.52+/-0.20), and the median surface density in the subsample is 54 Msun/pc^(-2). We detect 13CO in four GMCs and find a mean 12CO/13CO flux ratio of 6.2. Our interferometric observations recover between 30% and 100% of the integrated intensity from the APEX single dish CO observations of Faesi et al. 2014, suggesting the presence of low-mass GMCs and/or diffuse gas below our sensitivity limit. The fraction of APEX emission recovered increases with the SMA total intensity as well as with the star formation rate.Peer reviewe

    The ALMA view of GMCs in NGC 300 : Physical Properties and Scaling Relations at 10 pc Resolution

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for published in The Astrophysical Journal. The Version of Record is available online at https://doi.org/10.3847/1538-4357/aaad60We have conducted a 12CO(2-1) survey of several molecular gas complexes in the vicinity of H ii regions within the spiral galaxy NGC 300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10 pc and 1 , sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC 300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth ΔV (ΔV ∝ R 0.48±0.05), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60 pc -2. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size-linewidth relation.Peer reviewedFinal Accepted Versio

    PHANGS CO kinematics: disk orientations and rotation curves at 150 pc resolution

    Full text link
    We present kinematic orientations and high resolution (150 pc) rotation curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of non-axisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines-of-sight contained in the PHANGS CO velocity fields mapped at 1'' resolution. The high resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log(M⋆(M⊙)\rm M_{\star}(M_{\odot}))=9.0-10.9 probed by our sample are very close to circular and have uniform thickness.Comment: 19 figures, 36 pages, accepted for publication in ApJ. Table of PHANGS rotation curves available from http://phangs.org/dat

    The Gas Morphology of Nearby Star-Forming Galaxies

    Full text link
    The morphology of a galaxy stems from secular and environmental processes during its evolutionary history. Thus galaxy morphologies have been a long used tool to gain insights on galaxy evolution. We visually classify morphologies on cloud-scales based on the molecular gas distribution of a large sample of 79 nearby main-sequence galaxies, using 1'' resolution CO(2-1) ALMA observations taken as part of the PHANGS survey. To do so, we devise a morphology classification scheme for different types of bars, spiral arms (grand-design, flocculent, multi-arm and smooth), rings (central and non-central rings) similar to the well-established optical ones, and further introduce bar lane classes. In general, our cold gas based morphologies agree well with the ones based on stellar light. Both our bars as well as grand-design spiral arms are preferentially found at the higher mass end of our sample. Our gas-based classification indicates a potential for misidentification of unbarred galaxies in the optical when massive star formation is present. Central or nuclear rings are present in a third of the sample with a strong preferences for barred galaxies (59%). As stellar bars are present in 45±\pm5% of our sample galaxies, we explore the utility of molecular gas as tracer of bar lane properties. We find that more curved bar lanes have a shorter radial extent in molecular gas and reside in galaxies with lower molecular to stellar mass ratios than those with straighter geometries. Galaxies display a wide range of CO morphology, and this work provides a catalogue of morphological features in a representative sample of nearby galaxies.Comment: 17 pages, 14 figures (+ Appendix 9 pages, 4 figures). Accepted for publication in A&

    PHANGS: Constraining Star Formation Timescales Using the Spatial Correlations of Star Clusters and Giant Molecular Clouds

    Full text link
    In the hierarchical view of star formation, giant molecular gas clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1") PHANGS-ALMA catalogue of GMCs with the star cluster catalogues from PHANGS-HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4-6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≀\leq 10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the >10 Myr stellar populations, indicating that the hierarchical structure dissolves over time.Comment: 15 pages, 11 figures, 4 tables. Accepted to MNRAS Sept 6 202

    Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies

    Get PDF
    We compare the observed turbulent pressure in molecular gas, Pturb, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, PDE. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that Pturb correlates with, but almost always exceeds the estimated PDE on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of PDE on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed Pturb in galaxy disks. We also find that molecular gas with cloud-scale Pturb≈PDE≳105kBKcm−3 in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between Pturb and the observed SFR surface density, ΣSFR, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between ΣSFR and kpc-scale PDE in galaThe work of J.S., A.K.L., and D.U. is partially supported by the National Science Foundation (NSF) under Grants No. 1615105, 1615109, and 1653300. The work of J.S. and A.K.L. is partially supported by NASA under ADAP grants NNX16AF48G and NNX17AF39G. The work of E.C.O. is partly supported by NASA under ATP grant NNX17AG26G. A.H., C.N.H., and J.P. acknowledge funding from the Programme National “Physique et Chimie du Milieu Interstellaire (PCMI)” of CNRS/INSU with INC/INP, co-funded by CEA and CNES, and from the “Programme National Cosmology et Galaxies (PNCG)” of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. E.R. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2017-03987. E.S., C.F., and T.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694343). J.M.D.K. and M.C. gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) through an Emmy Noether Research Group (grant No. KR4801/1-1) and the DFG Sachbeihilfe (grant No. KR4801/2-1). J.M.D.K. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement No. 714907). F.B. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 726384). S.C.O.G. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation)—Project-ID 138713538—SFB 881 (“The Milky Way System,” subprojects B01, B02, B08), and by the Heidelberg cluster of excellence EXC 2181- 390900948 “STRUCTURES: A unifying approach to emergent phenomena in the physical world, mathematics, and complex data,” funded by the German Excellence Strategy. A.U. acknowledges support from the Spanish funding grants AYA2016-79006-P (MINECO/FEDER) and PGC2018-094671- B-I00 (MCIU/AEI/FEDER)

    Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies

    Get PDF
    We compare the observed turbulent pressure in molecular gas, P_(turb), to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, P_(DE). To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multiwavelength data that trace the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that P_(turb) correlates with—but almost always exceeds—the estimated P_(DE) on kiloparsec scales. This indicates that the molecular gas is overpressurized relative to the large-scale environment. We show that this overpressurization can be explained by the clumpy nature of molecular gas; a revised estimate of P_(DE) on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed P_(turb) in galaxy disks. We also find that molecular gas with cloud-scale P_(turb) ≈ P_(DE) ≳ 10⁔ kB K cm⁻³ in our sample is more likely to be self-gravitating, whereas gas at lower pressure it appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between P_(turb) and the observed SFR surface density, ÎŁ_(SFR), is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between ÎŁ_(SFR) and kpc-scale P_(DE) in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale P_(DE) reported in previous works

    Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?

    Get PDF
    We use ALMA and IRAM 30-m telescope data to investigate the relationship between the spectroscopically-traced dense gas fraction and the cloud-scale (120 pc) molecular gas surface density in five nearby, star-forming galaxies. We estimate the dense gas mass fraction at 650 pc and 2800 pc scales using the ratio of HCN (1-0) to CO (1-0) emission. We then use high resolution (120 pc) CO (2-1) maps to calculate the mass-weighted average molecular gas surface density within 650 pc or 2770 pc beam where the dense gas fraction is estimated. On average, the dense gas fraction correlates with the mass-weighted average molecular gas surface density. Thus, parts of a galaxy with higher mean cloud-scale gas surface density also appear to have a larger fraction of dense gas. The normalization and slope of the correlation do vary from galaxy to galaxy and with the size of the regions studied. This correlation is consistent with a scenario where the large-scale environment sets the gas volume density distribution, and this distribution manifests in both the cloud-scale surface density and the dense gas mass fraction.Comment: 11 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    A Two-Component Probability Distribution Function Describes the mid-IR Emission from the Disks of Star-Forming Galaxies

    Full text link
    High-resolution JWST-MIRI images of nearby spiral galaxies reveal emission with complex substructures that trace dust heated both by massive young stars and the diffuse interstellar radiation field. We present high angular (0."85) and physical resolution (20-80 pc) measurements of the probability distribution function (PDF) of mid-infrared (mid-IR) emission (7.7-21 ÎŒ\mum) from 19 nearby star-forming galaxies from the PHANGS-JWST Cycle-1 Treasury. The PDFs of mid-IR emission from the disks of all 19 galaxies consistently show two distinct components: an approximately log-normal distribution at lower intensities and a high-intensity power-law component. These two components only emerge once individual star-forming regions are resolved. Comparing with locations of HII regions identified from VLT/MUSE Hα\alpha-mapping, we infer that the power-law component arises from star-forming regions and thus primarily traces dust heated by young stars. In the continuum-dominated 21 ÎŒ\mum band, the power-law is more prominent and contains roughly half of the total flux. At 7.7-11.3 ÎŒ\mum, the power-law is suppressed by the destruction of small grains (including PAHs) close to HII regions while the log-normal component tracing the dust column in diffuse regions appears more prominent. The width and shape of the log-normal diffuse emission PDFs in galactic disks remain consistent across our sample, implying a log-normal gas column density NN(H)≈1021\approx10^{21}cm−2^{-2} shaped by supersonic turbulence with typical (isothermal) turbulent Mach numbers ≈5−15\approx5-15. Finally, we describe how the PDFs of galactic disks are assembled from dusty HII regions and diffuse gas, and discuss how the measured PDF parameters correlate with global properties such as star-formation rate and gas surface density.Comment: 30 pages without appendix, 17 figures, (with appendix images of full sample: 56 pages, 39 figures), accepted in A
    • 

    corecore