23,695 research outputs found

    High order recombination and an application to cubature on Wiener space

    Full text link
    Particle methods are widely used because they can provide accurate descriptions of evolving measures. Recently it has become clear that by stepping outside the Monte Carlo paradigm these methods can be of higher order with effective and transparent error bounds. A weakness of particle methods (particularly in the higher order case) is the tendency for the number of particles to explode if the process is iterated and accuracy preserved. In this paper we identify a new approach that allows dynamic recombination in such methods and retains the high order accuracy by simplifying the support of the intermediate measures used in the iteration. We describe an algorithm that can be used to simplify the support of a discrete measure and give an application to the cubature on Wiener space method developed by Lyons and Victoir [Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 169-198].Comment: Published in at http://dx.doi.org/10.1214/11-AAP786 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Capability of NOL ballistics ranges for obtaining sphere drag coefficient data

    Get PDF
    Ballistic ranges for measuring drag coefficients of sphere

    Validation of an expert system intended for research in distributed artificial intelligence

    Get PDF
    The expert system discussed in this paper is designed to function as a testbed for research on cooperating expert systems. Cooperating expert systems are members of an organization which dictates the manner in which the expert systems will interact when solving a problem. The Blackbox Expert described in this paper has been constructed using the C Language Integrated Production System (CLIPS), C++, and X windowing environment. CLIPS is embedded in a C++ program which provides objects that are used to maintain the state of the Blackbox puzzle. These objects are accessed by CLIPS rules through user-defined functions calls. The performance of the Blackbox Expert is validated by experimentation. A group of people are asked to solve a set of test cases for the Blackbox puzzle. A metric has been devised which evaluates the 'correctness' of a solution proposed for a test case of Blackbox. Using this metric and the solutions proposed by the humans, each person receives a rating for their ability to solve the Blackbox puzzle. The Blackbox Expert solves the same set of test cases and is assigned a rating for its ability. Then the rating obtained by the Blackbox Expert is compared with the ratings of the people, thus establishing the skill level of our expert system

    Noise suppression in inverse weak value based phase detection

    Get PDF
    We examine the effect of different sources of technical noise on inverse weak value-based precision phase measurements. We find that this type of measurement is similarly robust to technical noise as related experiments in the weak value regime. In particular, the measurements considered here are robust to additive Gaussian white noise and angular jitter noise commonly encountered in optical experiments. Additionally, we show the same techniques used for precision phase measurement can be used with the same technical advantages for optical frequency measurements.Comment: 6 pages, 4 figure

    Consistency in statistical moments as a test for bubble cloud clustering

    Get PDF
    Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements

    Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata.

    Get PDF
    BackgroundThe Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo.ResultsThis study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole.ConclusionsThis is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed

    An Estimate of the Gas Transfer Rate from Oceanic Bubbles Derived from Multibeam Sonar Observations of a Ship Wake

    Get PDF
    Measurements of gas transfer rates from bubbles have been made in the laboratory, but these are difficult to extrapolate to oceanic bubbles where populations of surfactants and particulate matter that inhibit gas transfer are different. Measurements at sea are complicated by unknown bubble creation rates that make it difficult to uniquely identify and observe the evolution of individual bubble clouds. One method that eliminates these difficulties is to measure bubbles in a ship wake where bubble creation at any given location is confined to the duration of the passing ship. This method assumes that the mechanisms slowing the gas dissolution of naturally created bubbles act in a similar manner to slow the dissolution of bubbles in a ship wake. A measurement of the gas transfer rate for oceanic bubbles using this method is reported here. A high-frequency upward-looking multibeam echosounder was used to measure the spatial distribution of bubbles in the wake of a twin screw 61-m research vessel. Hydrodynamic forcing functions are extracted from the multibeam data and used in a bubble cloud evolution model in which the gas transfer rate is treated as a free parameter. The output of model runs corresponding to different gas transfer rates is compared to the time-dependent wake depth observed in the data. Results indicating agreement between the model and the data show that the gas transfer rate must be approximately 15 times less then it would be for surfactant-free bubbles in order to explain the bubble persistence in the wake

    Integrated photo-responsive metal oxide semiconductor circuit

    Get PDF
    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation
    corecore