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Abstract. The expert system discussed in this paper is designed to function as a testbed for research on
cooperating expert systems. Cooperating expert systems are members of an organization which dictates the
manner in which the expert systems will interact when solving a problem. The Blackbox Expert described in
this paper has been constructed using CLIPS, C"1"1", and X windowing environment. Clips is embedded in a
C++ program which provides objects that are used to maintain the state of the Blackbox puzzle. These objects
are accessed by CLIPS rules through user-defined function calls. The performance of the Blackbox Expert
is validated by experimentation. A group of people are asked to solve a set of test cases for the Blackbox
puzzle. A metric has been devised which evaluates the "correctness" of a solution proposed for a test case of
Blackbox. Using this metric and the solutions proposed by the humans, each person receives a rating for their
ability to solve the Blackbox puzzle. The Blackbox Expert solves the same set of test cases and is assigned
a rating for its ability. Then the rating obtained by the Blackbox Expert is compared with the ratings of the
people, thus establishing the skill level of our expert system.

INTRODUCTION

Distributed Artificial Intelligence or DAI is the branch of AI that is concerned with the problems
of coordinating the actions of multiple intelligent agents, in order to solve a large and complex
problem (Gasser 1987). The agents could be expert systems or other types of AI programs. Two
factors that could lead to the distribution of such agents are a geographic distribution required due
to the intrinsic properties of the problem being solved and a functional distribution of the problem.
The Distributed Vehicle Monitoring Testbed or DVMT distributes its agents based on a geographic
distribution of sensors (Durfee 1987) whereas the Distributed BlackboxTestbed described in (Pitula
1980) is based on data partitioning. In this paper, we are concerned with the validation of an expert
system (called Blackbox Expert) that solves the Blackbox puzzle. This expert system will be used
as an agent in our DAI research. Our laboratory contains a Distributed Computing Facility that is
composed of the MACH Distributed Operating System Kernel, a network of SUN workstations,
C++, and CLIPS.

The resource constraints of a university environment will permit the development of low
cost prototypes only. This normally has several conflicting requirements:

(a) The test environment should be "rich" in problems but not too complex to solve in
a realistic time with the available resources.
(b) The test data required by the experiment should be easy to obtain but not trivial.
(c) Exercising and evaluating the prototype should reveal "more than obvious" be-
haviour of the modeled system.

The prototype systems used thus far in DAI research have been very complex and have required
several man years of effort. For example, the manpower expended in the DVMTproject is estimated
to be 15 to 20 man years. In this context, the advantages and disadvantages of using Blackbox as
an experimental test case are described in (Pitula 1990).
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Figure 1: Beam Behaviour in Blackbox

Validation of a system substantiates that it performs with an acceptable level of accuracy
(O'Keefe 1987). Developing a validated expert system for DAI research is a non-trivial task and
must face several issues:

(a) Acquiring the knowledge and building the knowledge base.
(b) Arriving at an appropriate metric for performance evaluation.
(c) Finding an adequate number of human experts to participate in the validation ex-
periment.
(d) Designing an experiment for statistical evaluation of the performance of the expert
system compared with that of humans.

Unlike the case of other well known games and puzzles such as chess, there are no known ways
of rating human problem- solvers of Blackbox. On the contrary, Blackbpx is simple to learn, the
correct solutions are known, and knowledge acquisition is not too expensive. One of the outcomes
of our validation experiment is that we now have a set of test cases that are placed into multiple
groups of increasing complexity. The performance of the expert system is compared with that of
humans using this test set.

BLACKBOX AND DAI

The Blackbox puzzle1 consists of an opaque square grid (box) with a number of balls hidden in the
grid squares. The puzzle solver can fire beams into the box. These beams interact with the balls,
allowing the puzzle solver to determine the contents of the box based on the entry and exit points
of the beams. As illustrated in Figure 1, the beams may be fired from any of the four sides of the
box (along one of the grid rows or columns) and follow four simple rules:

(a) If a beam hits a ball, it is absorbed. (Labelled by 'H')
(b) If a beam tries to pass next to a ball, it is reflected 90 degrees away from the ball
in the square diagonally next to the ball. (Labelled Alphabetically except for 'H* and

(c) If a beam tries to enter the grid at a square adjacent to a border square that contains
a ball, it is reflected back out the way it came in. (Labelled by 'R')
(d) If a beam tries to pass between two balls, it is reflected back 180 degrees. (Labelled
by 'R')

*In previous publications Blackbox was referred to as a game. We have now decided to refer to it as a
puzzle, because the word "game" implies an element of luck. The word "puzzle" implies that a skill is needed
to find the solution to a problem, which is definitely the case with Blackbox.
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Figure 2: An Example of a Shielded Region.

The objective of the Blackbox puzzle-solver is to determine the contents of as many of the grid
squares as possible, while minimizing the total value of beams fired. Beams that are absorbed or
reflected have a value of one point, while deflections have a value of two points. The puzzle is
solved iteratively by firing beams and observing their exit point from the grid. The information
obtained from observing the exit points of the beams, and the problem solver's knowledge of how
the beam can be affected by the balls within the box are used to create hypotheses about the contents
of the box. The amount of information to be processed when solving the puzzle increases with the
grid size and the total number of balls.(Pitula 1990).

A region is called a shielded region if it is a proper subset of the Blackbox square, it contains
at least one ball, and is shielded by other balls so that no beams can penetrate into the region An
example of a shielded region is shown in Figure 2, wherein the shielded region is shaded. No beam
can penetrate into the shaded region. The oalls contained in this region are called "unmappable
balls . In the case of a shielded region, a person can only state that the contents of each square in
the region remains unknown.

According to (Parsaye and Chignell 1988), expert system tasks may be categorized into
four well defined classes that require different approaches and methodologies: diagnosis and repair,
monitoring and control, design and configuration, and intelligent tutoring. The tasks performed by
the Blackbox Expert fall into the first category. Diagnosis may be viewed as the task of discovering
the relationships between symptoms and faults (diseases). A single symptom, at a given level of
/I • *»y%it I *«*•« +v * «•» t\*t *%A +1* A «t^««»1 * f*£ AHK M«_ . -1- ff A, 1 j. — .— — j.* £ 1 *. _ / J * _ _ _ _ \ f± . • .• i *
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method of remedy or repair. As an analogy, consider the following pairs of subtasks performed by
an expert system for medical diagnosis and the Blackbox Expert respectively:

(a) Observing the symptoms of a disease or the results of a medical test versus observ-
ing the exit points of the beams fired.
(b) Suggesting new medical tests versus selecting one or more beams to fire before
hypothesising where the balls are located.
(c) Ruling out the possibility of certain diseases versus marking the squares as empty.
(d) Deciding how serious the potential errors in diagnosis are versus setting the weights
for the terms in the SCORE function (described in the section on Validation of the
Blackbox Expert).
(e) Taking into account the past treatment procedures followed for a disease versus con-
sidering the hypotheses generated from the sequence of beams that have been fired.

These types of analogies help in transferring the methodologies developed and the results of re-
search from one problem domain to another.

Several areas that are of interest to the DAI community include negotiation protocols for
expert systems (Smith 1980), blackboard architectures (Jagannathan et al. 1989), the sharing of
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information among multiple expert systems (Durfee 1987), and coordination of multiple expert
systems (Ginsberg 1987). When multiple experts are used to solve a single problem, they can be
members of an organization (Grossner 1990). An organization defines the type of control now and
data flow permissible among the experts. When dealing with 111-Structured problems (Simon 1973)
there are two phases required for problem-solving, namely the planning pliase and the execution
phase (Durfee 1986). The control and data flow constraints may oe applied in each of these phases
as necessary. In (Grossner 1990), it is shown through three different example organizations that
Blackbox is an interesting problem for DAI research.

THE BLACKBOX EXPERT

The primary goal in the design of the Blackbox Expert (Lyons 1990a, Lyons 1990b) was to provide
an expert system that could later be used in our experiments with organizations of cooperating
expert systems. Any system to be used for such a purpose requires the following features:

fa) It must be easy to modify the knowledge base.
(b) It must be possible to mooify the data structures used by the Blackbox Expert with-
out affecting the knowledge base.
(c) As the data structures used by the Blackbox Expert will be moved from its working
memory to a blackboard when the Blackbox Expert becomes a member of an organi-
zation, they should be designed to minimize the effects of this move.
(d) It must be possible to monitor which rules are fired as the Blackbox puzzle is solved.
(e) It must be possible to monitor the number and type of accesses to the data structures
used by the Blackbox Expert as it solves test cases of the Blackbox puzzle.

Easy modification of the knowledge base provides the flexibility we require for development of
the Blackbox Expert and our DAI experiments. In the development stage of the Blackbox Expert,
the knowledge needed to solve the Blackbox puzzle will be extracted from human experts. Human
experts tend to disagree on the strategies that should be used to solve Blackbox. Thus, many of the
rules in the knowledge base will be discovered incrementally by monitoring the performance of a
prototype of the Blackbox Expert. When the Blackbox Expert is used in an organization, modifying
its knowledge base would permit experimentation with the effects of updates or deficiencies in a
single expert's knpwledge case on the performance of the organization. The modularity of the
knowledge base will also allow construction of different organizations.

Easy modification of the data structures used by the Blackbox Expert is required to support
organizations and incremental development of the knowledge base. When the Blackbox Expert is
a member of an organization and the data structures are put on the blackboard, the method required
to access these data structures will change. Access to a data structure in the working memory
requires a local access whereas access to a blackboard will require the Blackbox Expert to generate
a request to an independent process, perhaps on a remote computer. Thus, the interface between
the rules of the Blackbox Expert and the data structures must be consistent whether a data structure
is located locally or on the blackboard. During the development phase of the Blackbox Expert, the
functionality and implementation of the data structures will undergo many changes. These changes
must be as transparent as possible to the rules in the knowledge base.

Our experiments using the Blackbox Expert for DAI research will depend on the ability
to monitor the activities of individual experts. Experimental research conducted to evaluate the
effectiveness of proposed solutions to the problems in DAI requires a comprehensive facility to
monitor and record the pattern of rules fired and data structures accessed.

In order to meet the design requirements, we decided to use a combination of an expert
system shell (Hayes-Roth et al. 1983) and object-oriented design techniques (Budd 1991). The
flexibility that was required for incremental growth and modularity of the knowledge base was
available as features or several expert system shells. Object-oriented design techniques were able
to provide the data encapsulation required to permit the migration of the data structures used by the
Blackbox Expert from its local working memory to the Blackboard. Object-oriented techniques
also ensured that a modification to the data structures would not require global changes to the
knowledge base.

The CLIPS expert system shell (Gilbert 1989) and the C++ object-oriented programming
language (Stroustrup 1987) were chosen for implementing the Blackbox Expert (Lyons 1990c,
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Figure 3: Components of the Blackbox Expert

Lyons 1990d). CLIPS and C++ were chosen together because CLIPS is written in C, the source
code of CLIPS is available, CLIPS provides a flexible interface to external procedures, and C++
provides the data encapsulation facilities. CLIPS also provides the flexibility required for the de-
velopment of the knowledge base and monitoring the rules that fire when the Blackbox Expert is
operating.

As shown in Figure 3, the Blackbox Expert is composed of three major components: the
User Interface, the Blackbox Puzzle, and the Expert Player. In this manner, each component of the
problem solving system is encapsulated. The arrows depict the flow of data between the modules.
The User Interface and the Blackbox Puzzle are implemented using C++ and the Expert Player is
based on both C++ and CLIPS.

The Blackbox Puzzle is responsible for simulating the problem domain. It contains the rules
describing the basic principles of the interactions that can occur between the beams and the balls in
the Blackbox Puzzle. The Blackbox Puzzle maintains the data structure that contains the location
of the balls within the Blackbox grid. It will receive the (X, Y) coordinates of the entry point for
beams that are fired by the Expert Player. It determines the trajectory of beams and returns the
(X, Y) coordinates of the exit point for the beams.

The Expert Player is responsible for solving the Blackbox puzzle. As shown in Figure 4, the
Expert Player is composed of four modules, the Expert Manager, Working Memory, the Rule Base,
and the CLIPS Inference Engine. These modules provide the rule base for solving the puzzle, the
inferencing capability required to draw conclusions from the rule base, the data structures used by
the rule base to maintain its current hypothesis as to the contents of the Blackbox, and an interface
between the CLIPS Inference Engine and the other modules of the system.

The Expert Manager maintains control over the operation or the CLIPS Inference Engine
and provides the interface between the components of the Expert Player, the Blackbox Puzzle, and
the user Interface. It is responsible for the following: responding to commands from the User
Interface, instructing the Rule Base to select a beam to fire, instructing the Blackbox Puzzle to fire
the beam selected by the Rule Base, and instructing the Rule Base to analyze the result of a beam
firing. The different operating modes for the Blackbox Expert, such as single step, are controlled
by the Expert manager.

Working Memory stores the data structures that are required by the Expert Player. It con-
tains the Expert Player's current hypothesis about the contents of the Blackbox, the number of balls
hidden in the grid, the number of balls that have been found thus far, the size of the grid, and a list
of the beams tnat have been fired. The Rule Base accesses Working Memory through a set of user-
defined functions that have been added to the CLIPS shell. These functions allow the Rule Base to
set the hypothesis for the contents of a square of the Blackbox, check the contents proposed for a
grid square, or check a region of the grid to see if it is known to be empty, etc.

The Rule Base used for the Blackbox Expert is divided into 4 groups: Beam Selection, Beam
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Figure 4: The Components of the Expert Player

Analysis, End Game, and Phase Control. These groupings reflect the different phases required for
solving the Blackbox puzzle. The opening strategy for solving Blackbqx requires a combination
of both firing beams and analyzing the information gained from observing their exit points. The
ending strategy for solving Blackbox requires different criteria for determining the contents of the
remaining grid squares because there may not be any additional beams that can be fired which will
provide more information.

The Beam Selection rules are responsible for determining the best beams for the Blackbox
Expert to fire. The Expert Player maintains a list of beams that have yet to be fired along with a
rating for each beam. The beam selection rules adjust these ratings based on the entry/exit locations
observed for previous beams and the current hypothesis about the contents of the Blackbox grid.

Figure 5 shows a sample beam selection rule. This rule will fire when there is a beam that
has not been fired which would potentially pass between two balls and the area of the grid that
the beam would pass through is known to be empty. Once the rule fires, it asserts a fact that will
cause an adjustment to the beam's rating. The user-defined function isempty is used by this rule to
determine ii the area of the hypothesis grid where the beam would pass before it reaches the ball is
empty.

Beam analysis rules are responsible for determining the contents of the grid. Their findings
are based on the data observed from the beams that have been fired, and the current contents of the
hypothesis grid. Rules can determine that a grid square is empty or that it contains a ball. There
are rules that can determine that the position of a ball placed on the hypothesis grid is known to
be certain. When two or more rules present contradictory hypotheses, a conflict is detected. Thus,
conflict resolution rules are required to determine which of the contradictory hypotheses is correct.

The Phase Control rules determine when the Blackbox Expert has finished the current phase.
For example, when all the beam selection rules that can fire have fired, the phase control rules will
take the highest rated beam and return it to the Expert Manager. The Expert Manager will then
fire that beam, place the results in Working Memory and have the Expert Player enter the Beam
Analysis phase. The Phase Control rules can also detect the start of a new phase such as the End
Game.

The End Game rules are activated when there are very few beams left that the Blackbox
Expert will fire. These rules will cause the Blackbox Expert to draw more "risky" conclusions as to
the contents of the puzzle. This is justified because during this phase the Blackbox Expert is aware
that it has observed most of the beams and it is unlikely to obtain any additional information by
firing more beams. The End Game rules will also decide when the Blackbox Expert has finished
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(defrule W91-24-left
(phase selection) ; fire during beam selection phase
(poss-ball-found ? ?rowl ?col $?)
(poss-ball-found ? ?row2&:

(>= ?row2 (+ ?rowl 2)) ; the balls should be in the same
?col $?) ; column, at least two rows apart

(SHOTLEFT =(+ Trowl 1) 0 $?) ; a beam has not been fired that
; will pass next to the upper ball

(not (ADJUSTED-SHOT =(+ row?l 1)
0 W91-24-left) ; only adjust the beam once for

(test (isempty ?rowl 1 ?row2
(-?col 1))) ; Is grid empty between the balls

; and the edge of the box
=>

(assert (ADJUST-SHOT =(+ ?rowl 1) 0 50 W91-24-left 0))
; then adjust the value of the beam

Figure 5: Sample Beam Selection Rule

solving the puzzle.
The User Interface is responsible for handling the interaction between humans and the

Blackbox Expert. It allows a person to monitor and assert control over the Expert's progress as
it solves the Blackbox puzzle. The User Interface is written in a combination of both C and C++
and runs under the X windowing environment. Both C'and C++ are required because the widgets
used in the X windowing environment are written in C while the procedural modules of the Black-
box Expert which carry out the functions requested by the humans are written in C++. Figure 6
shows the Blackbox Expert's User Interface, with a sample game in progress.

The User Interface consists of four areas: the Real Grid, the Hypothesis Grid, the Dialog
Window, and the Command buttons. These four areas allow a human to view the contents of the
Blackbox grid as well as the current hypothesis of the Blackbox Expert as it solves the puzzle, allow
the Blackbox Expert to annotate the actions it takes to solve the puzzle, and allow a human to issue
commands to the Blackbox Expert. Both the Real Grid and Hypothesis Grid are custom made
widgets designed specifically for the Blackbox Expert. The Dialog Window and the command
buttons are implemented using the ATHENA widget set (O'Reilly and Assoc. 1990).

The Real Grid serves two purposes: it displays the contents of the Blackbox grid, and it
allows humans to enter test cases for the Blackbox Expert to solve. Entering test cases is as easy as
pointing the mouse cursor at the grid square where a ball is to be placed and pressing the left button.
The right button of the mouse is used to remove a ball. Once a new test case has been entered into
the Real Grid, the Save command button can be used to store the placement of the balls in a file.

The Hypothesis Grid displays the Blackbox Expert's current hypothesis about the contents
of the Blackbox. It also displays the beams that have been fired by the Blackbox Expert. Areas
of the grid about which the expert has not made any conclusions are marked with the letter U, for
Unknown. Grid squares that the Blackbox Expert concludes contain a ball are marked with the
letter B, while squares that the expert concludes are empty are marked blank. When the Blackbox
Expert cannot definitely determine the contents of a end square because two or more rules are in
conflict over it, that square is marked with the letter C.

The Dialog Window is used by the Blackbox Expert to display messages that indicate the
actions it is taking to solve the current test case of Blackoox. Messages are displayed in a variety
of situations such as when beams are fired, and when conflicts are detected or resolved.
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Figure 6: The Blackbox Expert's User Interface

The Command buttons perform the following functions:

Load: Loads a Blackbox test case from a file. A prompt is given to get the name of
the file to load.
Save: Saves the current Blackbox test case to a file. A prompt is given to obtain the
file in which to save the location of the balls.
Log: Toggles the logging function. If logging is turned on, a list of all the actions
performed by the Blackbox Expert while solving the current test case of Blackbox is
saved in a file.
Run: Allows the identification of a batch file from which the interface will take all its
commands.
Start: Causes the Blackbox Expert to start solving the current test case of Blackbox.
Resume: When in trace mode, the Resume button causes the expert to fire the next
beam and then analyze the results.
Trace: Toggles trace mode. When tracing is turned ON, the Blackbox Expert will
stop after each beam is fired and analyzed; execution will resume upon the receipt of
a Resume Command.
Abort: Aborts a game in progress.
Quit: Terminates the Blackbox Expert.

VALIDATION OF THE BLACKBOX EXPERT

The validation of computer software systems refers to the process of determining if the system
satisfies the need for which it was designed (Boehm 1979). Validation of software systems is
concerned with the factors that determine the system's usefulness such as: correctness of the results
the system produces, its speed, its efficiency, its cost effectiveness, and many human factors. For
our purposes, we will be concerned only with the correctness of the results produced by the system.

The validation of expert systems is analogous to the validation of general software systems
but there are additional problems. The types of problems that are tackled by expert systems, called
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Hi-Structured Problems (Simon 1973), do not have a complete specification. Thus, while the prob-
lem can seem to be intuitively clear, the criteria to be used for determining the accuracy of the
solutions produced by an expert system, or even what constitutes an acceptable solution, are not
clear. The lack of a "complete" specification for the problems solved by expert systems is a serious
obstacle for the validation process.

The validation of expert systems strongly relies on the opinions of human experts. This has
its problems (O'Keefe 1987). Achieving a consensus among a group of human experts is difficult.
Generally, a human expert's time is limited and expensive. Producing a "complete set of test cases
for validating the expert system is typically not feasible.

Several models have been proposed for the development lifecycle of an expert system which
include validation phases. The spiral model used for general software systems (Boenm 1988) is
adapted to include phases that set the acceptable level of performance that is expected from the
expert system at different stages of development(O'Keefe and Lee 1990). The heuristic testing
approach of (Miller 1990) defines ten prioritized classes of fault types that can occur in an expert
system and proposes a method for automatic generation of test cases. These test cases will test
the expert system for the types of faults defined by each fault class. Generic tasks are used to
decompose a knowledge base into conceptual units (Harrison and Ratcliffe 1991) in order to derive
a standard methodology for knowledge base validation.

The development of the Blackoox Expert follows the modified spiral model of (O ' Keefe and
Lee 1990). Currently we have a "working" research prototype. The initial requirements analysis,
requirements verification, and setting of acceptable levels ofperformance phases are complete. The
following describes the validation phase we performed for our research prototype.

The Blackbox puzzle includes several features that facilitate the validation of the Blackbox
Expert. Any solution that is proposed by a person for a test case of the Blackbox puzzle can be
evaluated because the correct solution to the puzzle is known to another person. The time consumed
by a computer or humans to solve each test case of Blackbox is between 10 minutes for someone
with a lot of experience, and 30 minutes for a beginner. Therefore validation of the Blackbox Expert
is not costly. Developing a pppulation of human experts against whose performance the Blackbox
Expert can be validated is simple because the effort required by a human to become skilled at
solving Blackbox is not too large.

In consultation with a group of Blackbox experts, a metric has been devised to evaluate the
correctness of a solution that is proposed for any test case of the Blackbox puzzle. The factors that
were chosen to determine the correctness of a solution are: the number of balls that were correctly
located, the number of locations of the grid (other than those which contain balls) whose contents
are correctly identified, and the total value of the beams fired to solve the puzzle. As stated in the
objectives of Blackbox, the best solution would have all the balls and locations correctly identified
as well as a minimum total value for the beams that were fired.

The metric that was adopted is as follows:

where:

B° : The number of correctly located mappable balls.
Bw : The number of incorrectly positioned balls.
BM: The total number of mappable balls.
Lc: The number of locations of the grid which do not contain a mappable ball that are
correctly identified.
Lw: The number of locations of the grid which do not contain a mappable ball that are
incorrectly identified.
LT: The total number of locations of the grid which do not contain mappable balls.
bv: The total value of the beams fired to solve the puzzle.
bT: The total number of entry/exit positions of the Blackbox.

This metric assigns a numerical value to a proposed solution of any test case of Blackbox and is
used as a measure of the degree of its correctness. A solution with a lower SCORE is considered
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to be more correct than a solutipn with a higher score. This metric examines each of the factors th
human experts identified as being relevant to assessing the correctness of a proposed solution o
Blackbox. The SCORE function is sensitive both to correct and incorrect responses. The weight
placed on each factor rank the number of balls correctly identified as the most important facto
followed by the value of the beams fired and the number of correctly identified locations (thos
not containing balls) is the least important. The minimum SCORE possible is zero and it occur
when all balls are found, no beams are fired, and all locations are correctly identified. The maximun
SCORE possible is 500 and it occurs when no balls are found, all shots are fired, and all location
are incorrectly identified.

The Blackbox Expert is validated by comparing the correctness of the solutions it produce
with human performance. A group of people, whose familiarity with Blackbox ranges from a fev
hours of exposure to several years of exposure, are asked to solve a set of test cases for Blackbox
Using the metric for evaluating the correctness of the solutions proposed by these people, eacl
problem-solver receives a rating for their ability to solve Blackbox puzzles. The Blackbox Exper
solves the same set of test cases and is assigned a rating for its ability. Then the rating obtained b]
the Blackbox Expert is compared with the ratings of the people, thus establishing the skill level o:
the Blackbox Expert.

Two people with several years of experience in solving Blackbox developed the set of tes
cases to be used for validating the Blackbox Expert. The puzzles in the test set were given a rating ol
easy, medium, or hard. The two people who developed the test set participated in a group discusser
with several other people who also had a Ipt of experience with Blackbox. The group focused it<
discussion on the factors that would determine the degree of difficulty of a test case of the Blackbo>
puzzle. Using the input from this discussion, the two people responsible for the test set determinec
the criteria used to develop the test set and place each test case that was developed into one of the
three categories.

The people who created the test set decided that the following features would contribute tc
the complexity of a test case:

(a) The presence of unmappable grid squares.
(b) Beam entry and exit points that can be accounted for by many different trajectories
through the grid.
(c) The presence of balls in the corners of the box.
(d) A positioning of balls that results in a large number of Hits and Reflections.

The presence of unmappable grid squares increases the complexity of a test case because it makes
it difficult to decide when a solution has been found. Many people seem to have an aversion to
leaving parts of the Blackbox grid unknown. They will actually convince themselves that they
are able to pinpoint the locations of balls which actually are unmappable. People tend to always
choose the simplest solution. Thus, when there are many possible trajectories that can account foi
the entry and exit points of a beam people tend to make errors. If the puzzle-solvers do not confirm
their choices for the locations of the balls by firing more beams, they risk making mistakes. The
strategy used by many people when solving Blackbox is to work from the edges of the grid towards
the center. Bafls in the comers of the grid prevent a person from following this strategy thereby
increasing the difficulty in solving the puzzle. Deflections provide a lot of information to the puzzle-
solver because they often pinpoint the location of a ball and indicate many empty grid squares. A
positioning of the balls that results in many hits and reflections is very difficult to solve as there is
very little information with which one can determine the contents of the grid.

The rating of each person who participated in our validation experiment was done in two
stages. The first stage was designed to DC a learning phase and the second stage was the solution
of the test set The learning stage included a set of instructions explaining the basic principles oi
the Blackbox puzzle as well as the metric used for assessing the correctness of a proposed solution,
a demonstration of how a person would solve the puzzle, and a set of sample games designed to
demonstrate the principles and the metric described in the instructions. The test pnase required each
subject to solve the test cases which were presented to them in a random order. Even the subjects
with a lot of previous exposure to Blackbox were required to go through the learning phase in ordei
to ensure that they fully understood the metric.

RESULTS: VALIDATION EXPERIMENT

Fifteen people participated in our validation experiment. They solved the 17 test cases in oui
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Figure 7: Best, Median, and Worst Player

Blackbox test set. Figure 7 shows the scores obtained by the people who had the best (lowest),
median (middle), and worst (highest) average score for all seventeen test cases. Test cases A, B,
and C were placed in the easy category, cases D, E, F, and G were placed in the medium category,
and the other test cases were placed in the hard category. The person with the best score was
also found to be the most consistent puzzle-solver. Tms consistency is evident from the narrow
fluctuation in the scores for the person. The scores for the best person tend to rise slowly from easy
to hard test cases. The person at the median has scores that fluctuate more widely than the best
player. The person with the worst average score also experiences the largest variation in score.

The best, worst, and median scores for each test case are shown in Figure 8. Again, the
lowest scores obtained by any person exhibit the least variation. The median scores vary more than
the best scores and the worst scores have the largest variation. These scores also exhibit an upward
trend when the easy, medium, and hard test cases are compared.

The average scores and total number of errors made in placing balls in the Blackbox grid by
the people who solved the test set are shown in Table 1. Bo A the average score and total errors made
in placing the balls increase when comparing the easy, medium, and hard test cases. As expected,
this trend seems to suggest that the performance of the people when solving the test cases from each
of the three groups in our test set is different. In order to validate this assumption, we performed an
analysis of variance to determine if the difference that is observed in the mean scores of the three
groups can be accounted for by the variance in the scores of all the test cases solved. The ANOVA
table is shown in Table 2. The F ratio obtained with 2 and 252 degrees of freedom is 13.42. An
F ratio of 4.69 or greater is needed for significance with a confidence level of 99%, thus we can
reject the null hypothesis that /xea,y = nmedium = Hhard-

Having determined that the average scores for the three groups are statistically different, we
must now examine the individual differences between the groups. Table 2 shows the confidence
intervals for the pairwise comparisons of the means of the groups in the test set These comparisons
are done using an F value or F2i252,.95 = 3.035. As the confidence intervals for /ieoJJ, - /xme(i,um

and j/eaij, - Hhard do not contain zero we can reject the null hypotheses (/Jea,y - ^medium) = 0
and (/zeaay - nhard) = 0. Thus, /zea,y < fimedium and jieoaj, < Hhard- However, the confidence
interval for /zme<«um — Phard does contain zero, which does not permit us to reject the null hypothesis
((^medium — Hhard] = 0. Thus, there is a statistical difference between the easy and medium groups,
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Test Case

Worst -*- Median -&- Best

Figure 8: Best, Median, and Worst Scores

SUBJECT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

AVG

Total Ban Errors
EASY

ao
0.0
0.0
0.0
ZO
2.0
ao
ao
ao
ao
ao
ao
2.0
ao

10.0
2.1

MED
4.0
0.0
ao
0.0
1.0
zo
0.0
6.0
ao
6.0
&0
4.0

20.0
15.0
22.0
5.9

HARD
18.0
ZO
9.0
4.0
9.0

23.0
6.0
ao
7.0

21.0
17.0
13.0
33.0
30.0
27.0
15.1

ALL
30.0
2.0
9.0
4.0

12.0
27.0
6.0

14.0
7.0

27.0
25.0
17.0
55.0
53.0
59.0
23.1

AVG SCORE
SUBJECT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

AVG

EASY
80.0
60.0
45.0
697
64.7
50.0
575
61.7
597
597
66.7
54.2
46.7
86.1

102.6
647

MED
72.2
66.3
56.3
74.4
80.1
657
62.5

107.0
62.5
80.8
93.9
76.6

137.4
1187
1257
85.2

HARD
84.7
69.3
73.5
79.1
82.7
97.8
787
88.1
78.6
93,3

114.7
93.5

130.4
124.4
141.1
95.3

ALL
80.9
66.9
64.4
767
78.9
81.7
70.8
87.9
71.4
84.3

101.4
82.6

117.3
1167
130.6
87.4

Table 1: Average Score and Total Errors in Placing Bails
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Source at variation
Between group
Within group
Total

Sum of Squares df
33915.97 2.00

318506.48 252.00

MeanScware F
16957.99 13.42
1263.91

352422.45 254.00

Pairwise Comparison
Easy-Meotum
Medum-Hard
Easy-Hard

Group Companson
Easy-(Medum.Hard)
HarcHEasv.Medum)

Confidence interval
Lower Limit

-38.34
-23.44
•46.01

Upper Limit
-3.79
3.32

-16.24

Confidence Interval
Lower Limit

-40.77
9.38

Upper Limit
•11.42
31.81

Table 2: Analyses of Variance

PEOPLE
EXPERT

PEOPLE
EXPERT

Average Score
EASY MEDIUM

64.2 85.2
64.2 73.6

HARD
95.3
88.9

ALL
87.4

80.9
Average Ball Error

2.1 5.9
0.0 2.0

15.1 23.1
14.0

Table 3: Average Score and Ball Errors

the easy and hard groups, but not the medium and hard groups. The factors we used to place the
different test cases into the groups are valid. However, the difference between the medium and
hard groups is not confirmed.

The last set of tests to be performed on our test set are the group comparisons shown in
Table 2. The confidence intervals are given for /jeajy - (^mtdium+^ha^) ^ nhard — ("""y^""*""")
using an F value of /2,252,.9s = 3.035. In both cases, we can reject the null hypothesis that (fj,ea,y -
C""-rfu»n+r*i>arj)) _ Q and (p^rd - ("•••*+*»«*•«.)) = 0. Thus, the easy group is different from the
average of the medium and hard groups and the hard group is different from the average of the easy
and medium groups.

The performance of the Blackbox Expert on the test cases is shown in Figure 9. The Black-
box Expert is compared to that of the people who were rated as the best, median, and worst players.
Except for one test case (I), the best player performed better than the Blackbox Expert. The Black-
box Expert performed better than the worst player in 15 of the 17 test cases. The Blackbox Expert
performed better than the median player in 7 of the 17 test cases. The two test cases (C and P) where
the Blackbox Expert performed poorly compared to the worst player indicate a deficiency in the
knowledge base. Both test cases C and P have balls located near the corners of the Blackbox grid.
The knowledge base of the Blackbox Expert is lacking rules to determine when balls are located
near the corners of the Blackbox.

The average score and the total number of errors made placing balls by the humans and
the Blackbox Expert are shown in Table 3. The Blackbox Expert on average made fewer errors
locating balls than the humans. The lowest total number of errors (2 errors in 17 test cases) was
made by a person with several years of experience solving the Blackbox puzzle as seen in Table 1.
Also, the Blackbox Expert had a better average score on each group of test cases in the test set
except on the easy test cases where it had the same average score. When the total number of errors
in locating balls is considered, the Blackbox Expert ranks 7th compared to the people.

The average score obtained by the Blackbox Expert for each group or test cases as well
as the entire test set is compared to the average score obtained by the people in Figure 10. The
Blackbox Expert ranks 10<A on the easy test cases, 1th on the medium and hard test cases, and 7th
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Test Case
Figure 9: Scores of the Blackbox Expert

on the entire test set. The improvement observed in the Blackbox Expert's ranking on the medium
and hard test cases occurs because even though the Blackbox Expert and the humans can find all
the balls in the easy test cases, the Blackbox Expert requires more beams to solve the test cases. In
the case of the medium and hard test cases, the Blackbox Expert still tends to fire more beams than
the humans. However, on average it makes fewer errors which allows it to improve its position.

CONCLUSIONS AND FURTHER RESEARCH

In order to validate the expert system described in this paper, we created 17 test cases. Using a set of
criteria extracted from human Blackbox experts, the test cases were placed into three groups easy,
medium, and hard. Based on a metric defined in this paper and the results of the 15 people solving
each of the 17 test cases, the groups in the test set were statistically tested to determine if the mean
scores for the test cases in each group were different. It was found that the means of the easy and
hard groups are statistically different as are the means of the easy and medium groups. However, the
difference between the means of the medium and hard groups is not significant. Further statistical
tests have shown that the medium group can be combined either with the hard or with the easy
group to form two statistically different groups of test cases.

We have briefly described the structure and design of the Blackbox Expert in this paper. It
consists of 300 rules and 8000 lines of source code of which approximately 25% is comments. Its
performance is compared with that of the 15 people. This comparison included both the SCORE
metric developed in the paper and the total number of errors committed in placing balls. Overall
the Blackbox Expert ranks 7th with respect to SCORE and 7th with respect to total errors placing
balls.

By analyzing the games in which the people performed better than the Blackbox Expert,
we notice that die expert system can be improved in three ways: the rule base can be enhanced
to account for the cases where balls are placed in corner squares; the beam selection rules can be
improved; and the conflict resolution rules can be improved by studying the ball placement errors
committed by the expert system. The additional knowledge required for the improvements to the
rule base of the Blackbox Expert can now be obtained from the people who solved the test set.
During the next phases of the modified spiral model used for the development of expert systems,
this information will be useful.

The Blackbox Expert, the test cases, and the details of the humans solving the test cases
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Figure 10: Blackbox Expert versus Humans

379
ORIGINAL PAGE IS
OF POOK QUALITY



will all be useful for several experimental research projects. In particular, we are interested in co
operative problem solving with multiple expert systems. The optimality of different organizations
effects of Information Deficit", and the effectiveness of different planning and communicatior
protocols using the blackboard architecture are some of the problems that our group of two facultj
members and five graduate students are investigating.
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