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Consistency in statistical moments as a test for bubble cloud
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Frequency dependent measurements of attenuation and/or sound speed through clouds of gas

bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas.

The inversions are often done using an effective medium theory as a forward model under the

assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under

circumstances in which single scattering does not adequately describe the pressure field, the

assumption of independence in position can yield large errors when clustering is present, leading to

errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of

clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment.

A method is described here in which the existence of bubble clustering can be identified by

examining the consistency between the first two statistical moments of multiple frequency acoustic

measurements. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3636369]

PACS number(s): 43.30.Ft, 43.30.Es, 43.30.Pc [TGL] Pages: 3396–3405

I. INTRODUCTION

The effect of gas bubbles on small amplitude sound

waves propagating in fluids has been well studied, beginning

with Mallock’s “frothy water” (Mallock, 1910) and develop-

ing into an applied research topic as naval researchers began

to understand the strong signature of bubbles in ship wakes

(NDRC, 1946) and oceanographers developed an apprecia-

tion for the importance of bubbles in a variety of phenom-

ena, especially near surface wind-wave interaction (e.g.,

Thorpe, 1982). The theories that have been set forth and

widely used are typically effective medium theories which

treat two-phase bubbly mixtures as a single, homogenized

medium with characteristics describing the average propaga-

tion (e.g., Foldy, 1945; Van Wijngaarder, 1972; Commander

and Prosperetti, 1989).

Foldy (1945) developed an effective medium solution

by considering multiple scattering, where the incident field

at each bubble includes contributions from every other bub-

ble. Our interpretation of Foldy’s result—upon which the

work herein depends, and upon which the literature can

occasionally be confusing—is that it incorporates one-way

multiple scattering as defined by Ye and Ding (1995, section

1A, and Fig. 1). One-way multiple scattering includes those

waves that have interacted with two or more scatterers,

except where the wave interacts with any individual scatterer

twice. Or, in the words of Kargl (2001), “the scattered field

from a given scatterer can interact with one or more new

scatterers in the distribution, but a portion of this scattered

field cannot return to any previously visited scatterer.” Hahn

(2007) uses the same definition when describing Foldy’s

result, although he also somewhat ambiguously includes a

description of one-way multiple scattering as neglecting

“backscatter” between scatterers (for isotropic scatterers, at

least, one-way multiple scattering would include portions of

scattering “chains” for which the scattered field is propagat-

ing back toward the source prior to interaction with another

scatterer).

Most recently, the equivalence of Foldy’s result to one-

way multiple scattering has been shown by both Ye and

Ding (1995) and Henyey (1999) using diagrammatic techni-

ques. An analogous expansion of the multiple scattering se-

ries into successive orders of scattering and re-derivation of

Foldy’s work also appears in Weber (2008, equations

12–14). Weber (2008) do not specifically discuss one-way

multiple scattering in their brief derivation, but it is worth

noting that in their expression for triple scattering the ensem-

ble average is explicitly computed over three assumed inde-
pendent bubbles rather than two independent bubbles, one of

which is revisited, which is essentially the same conclusion

that can be found in Twersky (1953, section 3.3). Further,

numerical simulations by Weber et al. (2007a Fig. 5) demon-

strate the differences between the single scatter solution, the

single plus double scatter solution, and Foldy’s approximate

result, indicating that Foldy’s approximate solution incorpo-

rates more than just single scattering.

Several authors including Ye and Ding (1995), Henyey

(1999), and Kargl (2001) have discussed corrections to

Foldy’s approximate solution with the goal of incorporating

the missing scattering contributions, likely to become impor-

tant near resonance for high void fractions [e.g., void frac-

tions greater than 1.0� 10-4 for the Gaussian bubble size

distributions examined by Kargl (2001)]. It is assumed that
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for the bubble clouds considered in the present work, which

have void fractions that are approximately 1.0� 10�6 or

lower, albeit with non-Gaussian shaped bubble distributions,

any corrections that extend Foldy’s multiple scattering solu-

tion beyond one-way multiple scattering are negligible.

In addition to the approximation leading to one-way

multiple scattering, Foldy (1945) also assumed that the prob-

ability of a bubble being located at some particular location

within a bubble cloud with a given scattering amplitude s
was independent of the locations and scattering amplitudes

of any other bubble. This assumption may break down

within a cloud of bubbles when the bubbles are clustered, or,

using the terminology of Eaton and Fessler (1994), preferen-

tially concentrated. In the context of this work, clustering

can only be defined using multipoint statistics. For example,

the average bubble number density n (a single point statistic)

can vary in space across, for example, a ship wake or a

breaking wave bubble plume, a scenario that is readily

handled by the effective medium theories of Foldy (1945),

Commander and Prosperetti (1989), and others. Clustering,

however, is present in a bubble cloud when the joint proba-

bility density function (pdf) describing the simultaneous

locations of two bubbles is not equal to the product of the

marginal pdfs describing the locations of the individual bub-

bles. For very dense clouds of scatterers, clustering takes the

form of a “hole correction” which represents the impossibil-

ity of two scatterers occupying the same location (Fikioris

and Waterman, 1964). This effect, which results in a stochas-

tic dependency in bubble positions over distances on the

order of a bubble diameter, is likely to be negligible for bub-

ble clouds of interest in, for example, the ocean. However, it

is conceivable that bubbles can also become clustered on

longer scales. This may occur when bubbles interact with

turbulent flows, either because they cross streamlines in a

similar fashion to the small particles described by Eaton and

Fessler (1994) or because the average bubble number density

(a single point statistic) exhibits a spatial gradient that causes

the entrainment of bubble-rich fluid into bubble-poor fluid

(or vice versa). In both of these examples the clustering is

occurring on the interior of a bubble cloud, and this is the

scenario that will be considered herein.

The effect of bubble clustering on acoustic propagation

has been examined by Weber et al. (2007a,b) and Weber

(2008) who treated the interaction between the acoustic

waves and bubbles using Foldy’s (1945) classic multiple

scattering approach and found that clustering changes both

the attenuation of the average acoustic pressure field and the

higher order statistical moments. If bubble clustering is

unaccounted for when it is present, it can lead to erroneous

performance predictions for sonar systems in a ship wake or

near the ocean surface under breaking waves, and errors in

the estimation of bubble number density and void fraction

when inverting acoustic data (attenuation and/or sound

speed) for oceanographic purposes.

Without the use of specialized high frequency acoustic

or optical imaging equipment it is often difficult to deter-

mine if bubble clouds are clustered. The goal of this paper is

to describe an alternative method for identifying the impact

of bubble clustering on multiple frequency acoustic meas-

urements by examining the consistency between the first two

statistical moments of the measurements themselves. This

method is based on the results presented in Weber et al.
(2007a) that showed that clustering tended to lower the

attenuation of the average acoustic field (a first moment

quantity) while increasing the variance for the scenario they

were examining. In scenarios where multifrequency meas-

urements of the average attenuation and/or sound speed are

made for the purposes of inverting for bubble size distribu-

tion (e.g., Medwin, 1977; Lamarre and Melville 1995),

the contrasting behavior between the first two statistical

moments can be utilized to determine when clustering is

present. This idea has been discussed previously by Weber

et al., (2007b), and is further developed and demonstrated

here with a laboratory experiment in which both clustered

and nonclustered bubble clouds were generated.

II. CONSISTENCY BETWEEN THE 1ST AND 2ND
MOMENTS

Predictions of the acoustic pressure field p at some field

point~r in the presence of bubbles can be made using Foldy’s

multiple scattering approach (Foldy, 1945) which starts with

a set of coupled equations:

p ~rð Þ ¼ po ~rð Þ þ
X

i

s aið Þpi ~rið ÞG ~r;~rið Þ;

pi ~rið Þ ¼ po ~rið Þ þ
X
i0 6¼i

s ai0ð Þpi0 ~ri0ð ÞG ~ri;~ri0ð Þ; (1)

where po is the pressure field that would be observed in the

absence of any bubbles, s is the complex scattering coeffi-

cient for the ith bubble with radius ai, G represents the free-

space Green’s function for a point source, and pi represents

the incident field at a bubble. These equations are exact for a

particular configuration of bubbles, more generally they are

ensemble averaged over all possible configurations (realiza-

tions) of the bubble cloud to yield the average pressure field.

The positions of each bubble are treated as random variables,

and the ensemble average can be explicitly found using the

joint pdf q ~r1;~r2;~r3; :::ð Þ describing the positions of each of

the bubbles within the bubble cloud. Foldy (1945) made the

assumption that the positions of each bubble were independ-

ent random variables, in which case the joint pdf was equal

to the product of marginal pdfs. This simplifying assumption

ultimately leads to a complex effective medium wavenumber

k describing both the attenuation and dispersion in the aver-

age pressure field:

k2 ffi k2
o þ 4p

ð1
o

s að Þn að Þda ¼ k2
o þ 4pS; (2)

where ko is the wave number for the bubble free fluid, and

n(a) is the bubble size distribution. This effective medium

wave number is complex and describes both the attenuation

and dispersion in the bubbly fluid.

Weber (2008) considered the case where clustering was

present, i.e., the assumption that the bubble positions are

statistically independent no longer holds true. By treating the
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statistics of the bubble cloud using a quasicrystalline approx-

imation similar to that used by Lax (1952) for very densely

packed scatterers, a correction term for Eq. (2) was

developed:

k2 ffi k2
o þ 4pSþ 4pS2 p ~rð Þh i�1

�
ð

V

po ~rið ÞG ~ri;~rð Þ g ~ri �~rj jð Þ � 1½ �n ~rið Þd~ri (3)

where p ~rð Þh i denotes the ensemble average of p ~rð Þ. The last

term on the right-hand side is the correction term, which uti-

lizes the pair correlation function, g, to relate the joint pdf

function to the marginal pdfs for each bubble:

n ~ri;~rð Þ ¼ n ~rið Þn ~rð Þg ~ri �~rj jð Þ: (4)

The correction term in Eq. (3) vanishes when either cluster-

ing is not present, in which case the pair correlation function,

g, is equal to 1, or when single scattering adequately

describes the acoustic field. As described in Weber et al.
(2007a), the latter can happen because the scatterers are

weak, the bubble cloud is small, the propagation distance

through the bubble cloud is small, or some combination of

the three.

Equations (2) and (3) are derived by ensemble averaging

the acoustic pressure field, and consequently are first statisti-

cal moment quantities. Observations of acoustic fields in the

presence of random clouds of scatterers can also fluctuate,

and these fluctuations can be examined by considering the

variance in the acoustic field, which is (Ishimaru, 1978, see

eq. 14–28)

p ~rð Þp� ~rð Þh i � p ~rð Þh i p� ~rð Þh i

¼
ð

V

ð
sis
�
i p ~rið Þp� ~rið Þh iGe ~r;~rið Þ

� G�e ~r;~rið Þn ~ri; aið Þdaid~ri;

(5)

where Ge is the effective medium wavenumber and is identi-

cal to G but uses the effective medium wavenumber k rather

than ko.

When clustering is present and single scattering does

not adequately describe the acoustic field, inversions of fre-

quency dependent estimates of the attenuation or sound

speed using Eq. (2) will be in error. It is difficult to know

from observations of attenuation or sound speed alone that

clustering is present and effecting the acoustic field. How-

ever, if it is assumed that the inversion is correct, then it can

be used to predict the higher order statistics in the acoustic

field, such as the second moment described by Eq. (5). If this

same higher order statistic is estimated from the data itself,

then the match between that statistic and the prediction from

Eq. (5) provides a metric for determining whether clustering

can be neglected and also whether Eq. (2) adequately

describes the average acoustic pressure field. That is, the

consistency between the 1st moment (the attenuation or

sound speed characterizing the average pressure field) and

the 2nd moment (the average intensity in the pressure field)

can be used to provide a metric for determining whether the

clustering is having a nonnegligible impact on the acoustic

field.

III. A LABORATORY EXAMPLE

In order to illustrate and verify the first/second moment

consistency method for identifying the effects of bubble

clustering, a laboratory apparatus was constructed to create

both clustered and nonclustered bubble clouds. The labora-

tory measurements were conducted in an 8.7 m long, 6.9 m

wide, and 5.5 m deep tank of water at the Penn State Applied

Research Laboratory. Bubbles were generated using several

cylindrical pieces of porous ceramic connected to a pressur-

ized air supply. These devices were originally designed to

extract water from soil (they are called Remote Soil Water

Samplers) and are 6 cm long hollow ceramic rods that are

closed on one end. The end that is not closed is fitted with a

tube so that a gas can be pumped through the ceramic, creat-

ing bubbles. These same devices have also been used to cre-

ate bubbles by Coakley et al. (2002) who quote a maximum

pore size in the ceramic of 2.5 mm. Coakley et al. (2002)

generated nitrogen bubbles in a 25.4 cm cylindrical glass

beaker, allowing the large bubbles emitted from the ceramic

to rise to the surface while small bubbles were distributed

throughout the volume using a magnetic stirrer. They then

measured the bubble size distribution using a laser in situ
scattering and transmissometry (LISST) instrument

(Agrawal and Pottsmith, 2000), finding a distribution of bub-

ble radii that ranged from 15–55 mm with a mean of approxi-

mately 30 mm. From the standpoint of acoustic inversion for

oceanic bubble size distributions this size range is attractive

as large numbers of bubbles in this size range are often found

under breaking waves (e.g., Johnson and Cooke, 1979).

In the experiments that are of interest here, the newly

created bubbles were generated just outside of a 2 m long,

0.5 m diameter duct near a propeller (Fig. 1). The propeller,

which was attached to a variable speed motor, was used to

create a flow of water though the duct into which the bubbles

were entrained. By placing the bubble generators just outside

the inlet, the larger bubbles were able to freely rise to the

surface while the smaller bubbles (whose buoyant rise

speeds are smaller) were entrained in the flow through the

duct. This was done to limit the acoustic frequencies

required to characterize the bubble population, which is

FIG. 1. Experimental setup.
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done by measuring the frequency dependent attenuation (to

be discussed below). There was some concern that high lev-

els of vorticity in the flow downstream of the propeller

would impose a fluctuating spatial structure (i.e., clustering)

on the bubble cloud that was being swept down the duct. To

mitigate this effect, a honeycomb of 12.7 cm long by 3.81

cm diameter PVC tubes was stacked into the duct in order to

straighten the swirling flow. Similar strategies have been

employed in wind tunnels, although flow straightening vanes

are perhaps more common (Barlow et al., 1999). In addition

to reducing the vorticity in the propeller driven flow, it was

also hoped that the honeycomb structure would serve to spa-

tially mix the bubble flow downstream as the jets of water

exiting the PVC tubes interacted with each other in a similar

fashion to what might be expected for grid generated turbu-

lence (Mehta and Bradshaw, 1979). Acoustic propagation

measurements were conducted just downstream of the duct

exit (1.63 m downstream of the honeycomb structure).

In order to determine the applicability of the theory

describing acoustic propagation through nonclustered bubble

clouds to the bubble cloud generated by the apparatus shown

in Fig. 1, it was necessary to measure the structure (or the

lack of structure) in the bubble cloud. This was done using a

Reson 8101 multibeam sonar. This sonar operates at a center

frequency of 240 kHz and transmits short pulses from a line

array with a beam pattern that is nominally 1.5� � 170�.
Backscattered acoustic signals are received on 101 identical

15� � 1.5� beams that are oriented to make measurements in

a plane over a 150� arc. Using the product theorem (Kinsler

et al., 2000), the combination of transmit and receive arrays

results in beams that are 1.5� � 1.5�.
The multibeam sonar was located beneath the duct look-

ing upwards, and used to make measurements of a cross-

section of the bubble plume in a plane that was orthogonal to

the direction of the flow, approximately 0.3 m downstream

of the exit of the duct and approximately 1.4 m below the

midpoint of the duct. The raw data output from the multi-

beam sonar processor consists of the 101 beam time series,

each of which is sampled at 15 ksamples/s. The spatial distri-

bution of the average backscatter from 300 pings of multi-

beam data—a proxy for the bubble number density, and a

single-point statistic that does not in itself provide informa-

tion regarding the presence of clustering—is shown in

Fig. 2. The shape of the jet of bubbles exiting the duct can

clearly be seen, as can the effect of bubble buoyancy which

is manifested as an increase in the bubble number density

above the jet and the relatively small amount of bubbles

found below the jet.

The multibeam sonar data can also be used to estimate

the pair correlation function g in the bubble cloud using the

methodology described by Weber (2008), where the pair cor-

relation estimate was given as

g ~r1 �~r2j jð Þ ¼
p1 ~r1ð Þp�2 ~r2ð Þ
� �
p1 ~r1ð Þh i p�2 ~r2ð Þ

� � : (6)

In Eq. (6), p1 and p2 are measurements proportional to the

acoustic pressure that are directly recorded from the multi-

beam sonar. As in Weber (2008), it is assumed that the

multibeam measurements are at sufficiently high frequency

(and hence off resonance for most bubbles) that only single

scattering is important. Equation (6) was estimated from the

same 300 pings used to generate the average bubble density

at ranges r ¼ ~r1 �~r2j j varying from 3–50 cm, with the result

(solid line) shown in Fig. 3. Individual estimates of Eq. (6)

are found by computing a time average over the 300 pings

for individual pairs of multibeam resolution “cells” (see Fig.

2), each of which is shown in Fig. 3 in order to provide an

estimate of the range of the data. These data are binned at a

resolution of 0.02 m, and then each bin is averaged in order

to provide the final pair correlation estimate. The standard

deviation in the pair correlation estimate for each bin is

between 0.03 and 0.04 at ranges between 0.06 and 0.5 m,

and there are more than 100 measurements in each of these

bins. Note that by replacing the ensemble average in Eq. (6)

with an average across time, the random processes governing

the bubble cloud have been assumed to be ergodic. Inherent

in this assumption is that these random processes are station-

ary, a condition that is more easily achieved in the controlled

conditions of a laboratory setting than in many other settings

(e.g., a bubble cloud under a breaking wave). It is also worth

noting that while estimates of Eq. (6) were constrained to the

plume proper (i.e., between the locations of locations of pro-

jector and hydrophone shown in Fig. 2), any variation in Eq.

(6) that might exist as a function of position within the jet

has been neglected.

The pair correlation estimated from the 300 pings (Fig.

3) is close to one everywhere, indicating that there is little

clustering present in the bubble cloud. The notable exception

to this is the increase in the pair correlation at distances less

than 6 cm, where a maximum pair correlation of 1.175 is

reached. The data at these short distances comes from adja-

cent beams which overlap each other at the half-power (� 3

dB) points, making it likely that the apparent increase in pair

correlation for adjacent beams is an artifact of the system.

FIG. 2. The average multibeam backscatter from the bubble cloud (in dB,

relative units), representing the spatial dependence of the average bubble

number density. The two circles represent the location of the projector and

the hydrophone used in the propagation experiment, which are located at a

height corresponding to the midpoint of the circular duct in which the bub-

bles were generated. The solid lines represent the spatial resolution of the

multibeam as a function of both beam angle and range.
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At the same time that the multibeam sonar data shown

in Figs. 2 and 3 were being collected, 0.2 ms long gated cw

pulses were transmitted through the bubble cloud across a

0.57 m long path from a fixed source to a fixed receiver at

the locations shown in Fig. 2. Nine different signals corre-

sponding to frequencies of 15, 25, 35, 43, 51, 59, 68, 80, and

120 kHz were transmitted across the bubble plume, each of

which had a bandwidth of �5 kHz. These signals were trans-

mitted from an Agilent 33120A signal generator, amplified

on a Krohn-Hite 7500 power amplifier, and then transmitted

into the water from an ITC-1042B spherical transducer at

source levels less than 170 dB re 1 mPa at 1 m. The entire

sequence of 0.2 ms signals was transmitted in less than 10

ms, and the sequence was staggered in frequency (15, 43,

68, 25, 51, 80, 35, 59, 120 kHz) in order to keep the fre-

quency difference between adjacent pings large so that inter-

ference caused by the pulse reverberating from the

mechanical elements of the experiment was reduced. After

propagating through the bubble cloud, the signal was

received on a Reson TC4042 spherical hydrophone, ampli-

fied and filtered using a Krohn-Hite model 3364 filter, and

then digitized at a rate of 333 ksamples/s and at a resolution

of 16 bits.

The pulse train was transmitted 20 times per second for

up to 5 min in order to generate a statistically significant

ensemble of propagation data through the bubble cloud. The

signal amplitudes were extracted in the frequency domain,

and then compared to the amplitudes received when no bub-

bles were present in order to estimate the frequency depend-

ent attenuation, which is shown in Fig. 4. Note that for the

case where no bubbles were present, the signal amplitudes

represent the scenario where the air supply attached to the

bubble generators was switched off, but the air motor was

still running. Tests done for this no-bubble scenario show

that the variance of the signal amplitude was less than 0.1%

of the squared mean signal amplitude for all frequencies.

The maximum attenuation observed here is 3.9 Nepers/m

(33.9 dB/m) at frequency of 35 kHz. This attenuation curve

has been inverted to find the bubble size distribution n(a)

using the iterative technique described by Caruthers et al.
(1999), a method that utilizes Eq. (2) and inherently assumes

that clustering is not present, with the result shown in Fig. 4.

The data indicate a bimodal distribution of bubbles, with one

size group exhibiting a peak at 25 mm in close agreement

with the result reported by Coakley et al. (2002) with the

same bubble generators. The second group of bubbles exhib-

its a peak near 70 mm. It is not surprising that this bimodal

distribution was not observed by Coakley et al. (2002) given

that they purposely tried to eliminate the larger bubbles by

allowing them to rise to the surface before starting their

measurements. The mechanism behind the bimodal distribu-

tion is not known, although one possible explanation is that

the two different groups are generated at different locations

on the bubble generator (e.g., one along the length, and one

at the cap). The average void fraction for this bubble cloud is

4.0� 10-6, which roughly corresponds to the void fraction

that would be observed from a Gamma plume formed under

an open ocean breaking wave for a wind speed of 20 m/s

using the parameterization given by Novarini et al. (1998).

The 1st/2nd moment consistency methodology can be

employed here to examine the accuracy of the inversion pro-

cedure. An example of the fluctuating pressure amplitude, P,

from which the 2nd moment is estimated, is shown in Fig. 5

where it has been normalized by the pressure amplitude Po

observed with no bubbles present. Due to the time gating of

the signal observed on the hydrophone that was used when

calculating the observed attenuations, the acoustic pressure

fluctuations shown here correspond only to the ballistic com-

ponent of the acoustic pulse. Time gating is important to

consider when trying to predict the variance that would be

FIG. 3. The pair correlation function for the assumed nonclustered bubble

cloud, including individual estimates (dots) from the various pairs of multi-

beam resolution cells and their combined average (solid line).

FIG. 4. A measurement of the frequency dependent attenuation (left side,

stars) and the associated bubble size distribution (right side). The solid line

on the left shows the attenuation that would be predicted based on (2) using

the bubble size distribution from the right hand side.

FIG. 5. An example of the observed fluctuating acoustic pressure amplitude

at frrquency of 68 kHz for the open-tube setup shown in Fig. 1. The ping

rate was 20 Hz, and each data point here corresponds to the amplitude of a

single ping.
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observed because only a portion of the bubble cloud is physi-

cally capable of contributing to the pulses. If only single

scattering were important, then the region contributing to the

ballistic component of the pulse via scattering would be

defined by the ellipsoid shown in Fig. 6(a). If a bubble falls

outside of this ellipse, then the time required for the acoustic

wave to propagate from the projector to the bubble and then

to the hydrophone will result in an arrival time later than the

ballistic component of the pulse. For double scattering, in

which an individual scattering chain contains two bubbles,

the ellipse would still define the extents of the region con-

tributing to the ballistic component, but some of the scatter-

ing chains within the ellipse would arrive later [Fig. 6(b)].

This extends to triple scattering chains, quadruple scattering

chains, and so on. The difficulty in sorting out the double (or

higher) scattering paths is exacerbated for very short pulses.

For the experiments discussed here, the length of each pulse

was 0.2 ms, which is slightly more than half the time

required for the pulse to propagate from the projector to the

hydrophone. Thus, most of the double scattering paths con-

tained within the bounding ellipse will contribute to the bal-

listic component of the pulse.

The predicted variance is calculated by numerically

evaluating an approximate form of the variance in the pres-

sure amplitude that is found by expanding Eq. (5) and using

the first two terms:

p ~rið Þp� ~rið Þh i � p ~rið Þh i p� ~rið Þh i

¼
ð

V

ð
sis
�
i p ~rið Þh i p� ~rið Þh iGe ~r;~rið Þ

�G�e ~r;~rið Þn ~ri; aið Þdaid~ri:

(7)

Equation (7) was evaluated with a volume integral limited to

ranges for which the total path length between the source,

any bubble, and the hydrophone was less than the separation

distance between the source and the hydrophone plus the

gated pulse length. It should also be noted that the mean

pressure amplitude used in the integral is assumed to decay

as e�ar=r, where a and r are the attenuation and range

through the bubble cloud, respectively, as the pulse propa-

gates away from the spherical projector. Further, the bubble

size distribution is weighted so that it includes the spatially

varying mean bubble size distribution shown in Fig. 2. The

result of the numerical integration of Eq. (7) is shown in

comparison with the observed variance (over 2000 measure-

ments) in Fig. 7, where the variance has been normalized by

the squared mean pressure:

r2

l2
¼ p ~rið Þp� ~rið Þh i � p ~rið Þh i p� ~rið Þh i

p ~rið Þh i p� ~rið Þh i : (8)

The variance in the fluctuating pressure amplitude reaches a

maximum of 24% of the squared mean value at 35 kHz,

which is quite high considering that the acoustic pulse has

traveled less than 1 m. The close match between the

observed and predicted variance is an indication that bubble

clustering is not present, which is expected given the pair

correlation function shown in Fig. 3. The random uncertainty

in the estimate of Eq. (8) from the observations includes con-

tributions from both the estimate of the variance, r2, and the

estimate of the squared mean, l2. The standard deviation in

the frequency dependent estimates of Eq. (8) shown in Fig. 7

varies from approximately 5% of the estimated value for fre-

quencies of 68 kHz and above to almost 40% at a frequency

of 35 kHz, corresponding to the weakest and strongest

effects of the bubble cloud on the acoustic field, respectively.

Based on the consistency between the first and second

moments in light of the uncertainty in these estimates, the

estimated bubble sized distribution shown in Fig. 4 can be

considered to be correct.

Using the same apparatus shown in Fig. 1, the consis-

tency between first and second moments was investigated

for a range of void fractions by varying the speed of the pro-

peller which had the effect of entraining varying quantities

of bubbles. Figure 8 shows the comparison between

observed and predicted variance for void fractions ranging

from approximately 1.1� 10�6 to 5.8� 10�6, with generally

good agreement. The largest deviations between the predic-

tion and the observation appear at one of the two lowest fre-

quencies. The reasons for these differences are not known,

although one possible explanation is nonstationarity in the

bubble cloud for the larger bubble sizes. Perhaps the most

troubling discrepancy between observation and model in

FIG. 6. The bounding ellipses for scattering contributions to the ballistic

component of the acoustic pulse. The top figure shows example scattering

chains that contribute to the ballistic component of the pulse (solid line) and

those that arrive afterward (dashed line) for the single scattering case, and

the bottom figure shows the same type of scattering for the double scattering

case.

FIG. 7. The observed (stars) and predicted (dashed line) variance as a func-

tion of frequency. Note the variance has been normalized by the squared

mean pressure.
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Fig. 8 occurs at a frequency of 25 kHz for the highest void

fraction, for which the standard deviation in the estimate of

Eq. (8) is approximately 75% of the estimated value for Eq.

(8). Elsewhere, the random uncertainty in the estimate of Eq.

(8) is smaller, reaching a maximum of approximately 20%,

15%, and 10% of the estimate for Eq. (8), as the void frac-

tion changes from 3.7� 10�6 to 2.4� 10�6 to 1.1� 10�6,

respectively. It could also be that some portion of these devi-

ations is due to an error in the calculation of Eq. (5), which

is given only in approximate form by Eq. (7).

In order to examine the effect of bubble clustering, a

modification was made to the bubble cloud generation sys-

tem to generate statistical dependence in the positions of the

bubbles. The honeycomb structure described earlier was

removed, and approximately midway down the duct the cir-

cular cross-section was reduced to an approximately 10 cm

diameter duct. A moveable nozzle of the same diameter was

then placed on the end so that the flow of bubbles could be

randomly redirected (by hand) to different locations through-

out the course of an experiment. As the nozzle was moved

from one direction to another, the number density of the bub-

bles in the first location was expected to diminish as the

number density in the new location increased. The flow

through the nozzle was estimated to be 15 cm/s, correspond-

ing to a jet Reynolds number of 17 000, an indication that

the flow through the nozzle was turbulent.

The spatial variation in the average bubble density (the

single point statistic) was measured with the multibeam so-

nar using the same technique described earlier. The data

look similar to those measured when the nozzle was not in

place, although the variation in average bubble density in the

cross-stream direction is slightly smaller, varying by no

more than þ/� 1 dB between the locations of the projector

and the hydrophone.

The pair correlation function was also estimated from

these data, as shown in Fig. 9. In contrast to the result from

the nonclustered case shown in Fig. 3, the pair correlation

function shown here is significantly higher than one for

ranges less than 0.3 m indicating that there is structure pres-

ent in the fluctuating bubble density. It is also interesting to

note that the pair correlation does not asymptote to one at

ranges greater than 0.3 m, but is instead less than one. This

indicates that given the location of a bubble, it is less likely

to find another bubble at distances greater than 0.3 m from

the first bubble. This behavior is expected for the bubble

cloud created with the nozzle: the fluctuating bubble density

is always greater in the direction that the nozzle is pointed

and lower where it is not pointed.

Multiple frequency acoustic propagation measurements

were also collected through the bubble clouds generated

with the moving nozzle, using the same methodology

described earlier. The frequency dependent attenuation was

extracted from the mean pressure field and inverted for the

bubble size distribution, as shown in Fig. 10. A check of

the inversion result was performed by using it to compute

the attenuation that would be predicted from Eq. (1), and the

result clearly matches the observation. If the assumption that

clustering was not present in the bubble cloud were true,

then the variance that would be predicted using the same

bubble size distribution should match the observed variance.

However, this turns out not to be the case for the data shown

here where the observed variance is more than twice as high

as the predicted variance between 43–80 kHz. This higher

than expected variance is an indication that clustering is

FIG. 8. A comparison between the

observed (solid lines) and predicted

(dashed lines) variance normalized

by the squared mean pressure, plot-

ted as a function of frequency for

four different void fractions. The

void fraction, VF, is shown for each

of the four observations. Note that

the vertical scale for the data on the

lower right side is different from the

other three plots.
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present in the flow, invalidating the results of the inversion

for the bubble size distribution.

When only single scattering is important, clustering

should not have an impact on the acoustic measurements

even when it is present. In order to investigate this, 75% of

the ceramic bubble generators were removed from the labo-

ratory apparatus used to generate the clustered bubble

clouds, which had the effect of substantially reducing the

number of bubbles exiting the moving nozzle. Three exam-

ples of the comparisons between observed and predicted var-

iance are shown in the top row of Fig. 11 for void fractions

of 1.3� 10�7 – 1.9� 10�7. Estimates of the standard devia-

tion in Eq. (8) for these three examples are between 6%–7%

of the estimated value for Eq. (8), with the exception of the

estimate at 15 kHz for the third example (void fraction of

1.9� 10�7) in which the random error rises to almost 40%.

Despite this outlier, the similarity between the predicted and

observed variance indicate that the first and second moments

are consistent and that bubble size distributions estimated

from the frequency dependent attenuation data would be

valid estimates. For the sake of comparison, three examples

with higher void fractions ranging from 8.6� 10�7� 1.1

� 10�6 are shown in the bottom row of Fig. 11. Estimates of

the random error in the Eq. (8) vary from 3%� 7% of the

estimated value for Eq. (8). In each case, the observed var-

iance is much higher than predicted variance, in contrast to

either the nonclustered or more tenuous bubble cloud cases.

This is an indication that the inversion results and subse-

quent void fraction estimates are in error. Because the exper-

imental procedure is essentially the same for all of the data

shown in Fig. 11, with the exception of the quantity of bub-

ble sources but including the presence of clustering, the dif-

ference between the top and bottom rows in Fig. 11 is

thought to be associated with the transition from the single

scattering case to the multiple scattering case.

IV. DISCUSSION

Clustering in bubble clouds has been previously shown

to have a nonnegligible impact on acoustic fields (Weber

et al., 2007a; Weber, 2008). In the mean acoustic pressure

field, these effects are present only when double scattering

(or higher) chains contribute to the acoustic field in a signifi-

cant way. In the case of inversions of multifrequency data

for bubble size distributions this effect can be difficult to

diagnose, particularly when only the average pressure field

is examined. The results from these inversions, however, can

be used to make predictions about the higher order statistical

moments in the acoustic field, which in turn can be com-

pared to the observations of these same statistics estimated

from the same data set.

In this paper, comparisons between the predicted and

observed 2nd moment were used as a metric to examine

whether spatial clustering was present in the field of bubbles.

These measurements were conducted for bubble distribu-

tions that are not dissimilar from that which would be

observed under open ocean breaking waves. Further, the pair

correlation function estimated for the clustered case in the

laboratory setting described here was reasonably close to the

pair correlation function that has been reported under open

ocean breaking waves, at least at short distances [see Weber

(2008), Fig. 6]. When clustering was imposed on the bubble

field in the laboratory setting (as verified with the use of

multibeam sonar measurements), the predicted and observed

2nd moments were shown to deviate by a factor of 2, far

greater than our estimate of random error for the observa-

tion, providing an indication that the inversion was in error.

Because the prediction is found using the average attenua-

tion, which is a first moment quantity, this metric is really an

examination of the consistency between the first and second

moments.

In conducting the analysis described here, Foldy’s one-

way multiple scattering solution (Foldy, 1945) for the mean

acoustic pressure field has been assumed to be correct and

used as the basis for inversion of frequency dependent attenu-

ation measurements for the bubble size distribution and sub-

sequent estimates of the void fraction. It is possible that the

neglected scattering terms in this solution have contributed to

the inconsistency between the first and second moments for

the observations of clustered bubble clouds at the higher void

fractions. However, observations with consistent first and

second moments have been made at void fractions that are

nearly seven times greater than for the clustered bubble

clouds. The void fraction estimates for the clustered bubble

clouds are admittedly in error, meaning that this possibility

FIG. 9. An estimate of the pair correlation function for the bubble cloud

generated with the moving nozzle.

FIG. 10. The observed attenuation through the bubble cloud (upper left,

stars) and the corresponding bubble size distribution estimated by inversion

(right). The lower left shows the predicted (dashed line) and the observed

(solid line) variance.
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of an error in the inversion routine due to an incorrect theory

for nonclustered bubble clouds cannot be concretely refuted,

but this possibility seems unlikely in light of the collective

measurements presented here. There will also be some error

in the iterative, numerical inversion routine even with a per-

fect effective medium theory; analysis of this numerical error

has not been undertaken as part of this work.

It has also been assumed that the shape of the bubble

size distribution (i.e., the relative amount of bubbles of one

size compared to another size) has been assumed to not vary

in space or time. Due to their difference in size, however,

bubbles may not respond identically when entrained in a tur-

bulent flow. The research of Eaton and Fessler (1994) sug-

gests that small particles may cross fluid flow streamlines

depending on their Stokes number (the ratio of the response

time of a bubble to some characteristic time scale in the fluid

flow). Considering that the response time of a bubble is size

dependent, it is possible that bubbles may selectively cross

streamlines depending on their size. This would create statis-

tical dependence between the size and location of multiple

bubbles, a scenario which was not considered in this work

but that could impact both the inversion result and the pre-

diction for higher order moments.

The analysis described in this work assumed that the

time series of observations collected for each scenario were

stationary. Although this condition was strived for during the

experiments, the data have not been conclusively shown to

meet this condition, and this is an additional potential source

of error in the results. In field settings (e.g., under breaking

waves or in the bubbly wakes of ships), stationary data sets

may be more difficult to acquire, and care should be taken to

ensure that this is the case prior to examining the consistency

between 1st and 2nd moments. It is also worth noting that

because the frequency dependent attenuation and sound

speed are linked via the dispersion relations (also known as

the Kramers-Kroenig relations) (Arfken, 1985), the method-

ology presented here should be extendable to frequency de-

pendent measurements of sound speed (e.g., Lamarre and

Melville, 1995).
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