203 research outputs found

    Temperature-driven transition from a semiconductor to a topological insulator

    Get PDF
    We report on a temperature-induced transition from a conventional semiconductor to a two-dimensional topological insulator investigated by means of magnetotransport experiments on HgTe/CdTe quantum well structures. At low temperatures, we are in the regime of the quantum spin Hall effect and observe an ambipolar quantized Hall resistance by tuning the Fermi energy through the bulk band gap. At room temperature, we find electron and hole conduction that can be described by a classical two-carrier model. Above the onset of quantized magnetotransport at low temperature, we observe a pronounced linear magnetoresistance that develops from a classical quadratic low-field magnetoresistance if electrons and holes coexist. Temperature-dependent bulk band structure calculations predict a transition from a conventional semiconductor to a topological insulator in the regime where the linear magnetoresistance occurs.Comment: 7 pages, 6 figure

    Entropic Upper Bound on Gravitational Binding Energy

    Get PDF
    We prove that the gravitational binding energy {\Omega} of a self gravitating system described by a mass density distribution {\rho}(x) admits an upper bound B[{\rho}(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density {\rho}. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[{\rho}(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on the one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand

    Interplay of chiral and helical states in a Quantum Spin Hall Insulator lateral junction

    Full text link
    We study the electronic transport across an electrostatically-gated lateral junction in a HgTe quantum well, a canonical 2D topological insulator, with and without applied magnetic field. We control carrier density inside and outside a junction region independently and hence tune the number and nature of 1D edge modes propagating in each of those regions. Outside the 2D gap, magnetic field drives the system to the quantum Hall regime, and chiral states propagate at the edge. In this regime, we observe fractional plateaus which reflect the equilibration between 1D chiral modes across the junction. As carrier density approaches zero in the central region and at moderate fields, we observe oscillations in resistance that we attribute to Fabry-Perot interference in the helical states, enabled by the broken time reversal symmetry. At higher fields, those oscillations disappear, in agreement with the expected absence of helical states when band inversion is lifted.Comment: 5 pages, 4 figures, supp. ma

    Velocity quantization approach of the one-dimensional dissipative harmonic oscillator

    Full text link
    Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian.Comment: 10 pages, 2 figure

    One-dimensional relativistic dissipative system with constant force and its quantization

    Full text link
    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.Comment: 11 pages, no figure

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    Simple proof of gauge invariance for the S-matrix element of strong-field photoionization

    Full text link
    The relationship between the length gauge (LG) and the velocity gauge (VG) exact forms of the photoionization probability amplitude is considered. Our motivation for this paper comes from applications of the Keldysh-Faisal-Reiss (KFR) theory, which describes atoms (or ions) in a strong laser field (in the nonrelativistic approach, in the dipole approximation). On the faith of a certain widely-accepted assumption, we present a simple proof that the well-known LG form of the exact photoionization (or photodetachment) probability amplitude is indeed the gauge-invariant result. In contrast, to obtain the VG form of this probability amplitude, one has to either (i) neglect the well-known Goeppert-Mayer exponential factor (which assures gauge invariance) during all the time evolution of the ionized electron or (ii) put some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16 October 2006 to J. Phys. A and rejected. This is the extended version (with 2 figures), which is identical to the paper published online on 12 December 2007 in Physica Script

    Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

    Get PDF
    The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations

    The (Im)Possibilities of Equitable Education of Multilingual Emergent Bilinguals in Remote Teaching: A Survey of English Language Teachers in the Great Lakes Region

    Get PDF
    The purpose of this study is to identify how teachers of Emergent Bilin guals labeled “English Language Learners” (EL teachers) responded to the sudden shift to emergency remote teaching and learning (ERTL) due to COVID-19 in March 2020. Emergent Bilingual teachers from Indiana, Minnesota, and Wisconsin were surveyed during ERTL and this paper details how these specialized teachers responded to ensure continued instruction for Emergent Bilingual students. We highlight what tasks EL teachers were asked to do by their schools, colleagues, and administra tion, as well as what was needed from students and families. Specifically, we organize their responses in terms of instructional and service-oriented activities. Data offer insights into existing disparities and demands placed on EL teachers (instructional and non-instructional services) which were exacerbated and made more visible by the ERTL condition. Findings suggest that districts are overwhelmingly out of compliance with requirements to provide equitable access to education as mandated by Title VI and the Equal Educational Opportunities Act
    corecore