2,604 research outputs found

    Exploration of the BaSeL stellar library for 9 F-type stars COROT potential targets

    Full text link
    The Basel Stellar Library (BaSeL models) is constituted of the merging of various synthetic stellar spectra libraries, with the purpose of giving the most comprehensive coverage of stellar parameters. It has been corrected for systematic deviations detected in respect to UBVRIJHKLM photometry at solar metallicity, and can then be considered as the state-of-the-art knowledge of the broad band content of stellar spectra. In this paper, we consider a sample of 9 F-type stars with detailed spectroscopic analysis to investigate the Basel Stellar Library in two photometric systems simultaneously, Johnson (B-V, U-B) and Stromgren (b-y, m_1, and c_1). The sample corresponds to potential targets of the central seismology programme of the COROT space experiment, which have been recently observed at OHP. The atmospheric parameters T_eff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ\chi^2-estimates and projected them on T_eff-[Fe/H], T_eff-log g, and log g-[Fe/H] diagrams. (Abridged)Comment: 16 pages, LaTeX2e; version accepted for publication in the new A&A Journal: minor changes + figures in black and white for better readabilit

    Automated Determination of Stellar Parameters from Simulated Dispersed Images for DIVA

    Get PDF
    We have assessed how well stellar parameters (T_eff, logg and [Fe/H]) can be retrieved from low-resolution dispersed images to be obtained by the DIVA satellite. Although DIVA is primarily an all-sky astrometric mission, it will also obtain spectrophotometric information for about 13 million stars (operational limiting magnitude V ~ 13.5 mag). Constructional studies foresee a grating system yielding a dispersion of ~200nm/mm on the focal plane (first spectral order). For astrometric reasons there will be no cross dispersion which results in the overlapping of the first to third diffraction orders. The one-dimensional, position related intensity function is called a DISPI (DISPersed Intensity). We simulated DISPIS from synthetic spectra (...) for a limited range of metallicites i.e. our results are for [Fe/H] in the range -0.3 to 1 dex. We show that there is no need to deconvolve these low resolution signals in order to obtain basic stellar parameters. Using neural network methods and by including simulated data of DIVA's UV telescope, we can determine T_eff to an average accuracy of about 2% for DISPIS from stars with 2000 K < T_eff < 20000 K and visual magnitudes of V=13 mag (end of mission data). logg can be determined for all temperatures with an accuracy better than 0.25 dex for magnitudes brighter than V=12 mag. For low temperature stars with 2000 K < T_eff < 5000 K and for metallicities in the range -0.3 to +1 dex a determination of [Fe/H] is possible (to better than 0.2 dex) for these magnitudes. Additionally we examined the effects of extinction E(B-V) on DISPIS and found that it can be determined to better than 0.07 mag for magnitudes brighter than V=14 mag if the UV information is included.Comment: 12 pages, 8 figures, Accepted for publication in A&

    Local polynomial regression for circular predictors

    No full text
    We consider local smoothing of datasets where the design space is the d-dimensional (d >= 1) torus and the response variable is real-valued. Our purpose is to extend least squares local polynomial fitting to this situation. We give both theoretical and empirical results

    Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology

    Get PDF
    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity

    Finding rare objects and building pure samples: Probabilistic quasar classification from low resolution Gaia spectra

    Full text link
    We develop and demonstrate a probabilistic method for classifying rare objects in surveys with the particular goal of building very pure samples. It works by modifying the output probabilities from a classifier so as to accommodate our expectation (priors) concerning the relative frequencies of different classes of objects. We demonstrate our method using the Discrete Source Classifier, a supervised classifier currently based on Support Vector Machines, which we are developing in preparation for the Gaia data analysis. DSC classifies objects using their very low resolution optical spectra. We look in detail at the problem of quasar classification, because identification of a pure quasar sample is necessary to define the Gaia astrometric reference frame. By varying a posterior probability threshold in DSC we can trade off sample completeness and contamination. We show, using our simulated data, that it is possible to achieve a pure sample of quasars (upper limit on contamination of 1 in 40,000) with a completeness of 65% at magnitudes of G=18.5, and 50% at G=20.0, even when quasars have a frequency of only 1 in every 2000 objects. The star sample completeness is simultaneously 99% with a contamination of 0.7%. Including parallax and proper motion in the classifier barely changes the results. We further show that not accounting for class priors in the target population leads to serious misclassifications and poor predictions for sample completeness and contamination. (Truncated)Comment: MNRAS accepte

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∼0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∼0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure
    • …
    corecore