385 research outputs found

    The P body protein LSm1 contributes to stimulation of hepatitis C virus translation, but not replication, by microRNA-122

    Get PDF
    The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-122. This role for LSm1 is specialized for miR-122 translation activation, as LSm1 depletion does not affect the repressive function of miR-122 at 3′ untranslated region (UTR) sites, or miR-122–mediated cleavage at a perfectly complementary site. We find that LSm1 does not influence recruitment of the microRNA (miRNA)-induced silencing complex to the HCV 5′UTR, implying that it regulates miR-122 function subsequent to target binding. In contrast to the interplay between miR-122 and LSm1 in translation, we find that LSm1 is not required for miR-122 to stimulate HCV replication, suggesting that miR-122 regulation of HCV translation and replication have different requirements. For the first time, we have identified a protein factor that specifically contributes to activation of HCV IRES-driven translation by miR-122, but not to other activities of the miRNA. Our results enhance understanding of the mechanisms by which miR-122 and LSm1 regulate HCV

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Comparison of the ligand‐binding properties of fluorescent VEGF‐A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET

    Get PDF
    Background and Purpose: Vascular Endothelial Growth Factor A (VEGF-A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165a to NanoLuciferase-tagged VEGF Receptor 2 (VEGFR2) in living cells is that the bioluminescence resonance energy transfer (BRET) signal is not sustained and declines over time. This may be secondary to receptor internalisation. Here we have compared the binding of three fluorescent VEGF-A isoforms to VEGFR2 in cells and isolated membrane preparations.Experimental Approach: Ligand binding kinetics were monitored in both intact HEK293T cells and membranes (expressing NanoLuciferase tagged VEGFR2) using BRET between the tagged receptor and fluorescent analogues of VEGF165a, VEGF165b and VEGF121a. VEGFR2 endocytosis in intact cells expressing VEGFR2 was monitored by following the appearance of fluorescent ligand-associated receptors in intracellular endosomes using automated quantitative imaging.Key Results: Quantitiative analysis of the effect of fluorescent VEGF-A isoforms onVEGFR2 endocytosis in cells demonstrated that they produced a rapid and potent translocation of ligand-bound VEGFR2 into intracellular endosomes. NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2. In isolated membrane preparations, ligand binding association curves were maintained for the duration of the 90 minute experiment. Measurement of koff at pH 6.0 in membrane preparations indicated shorter ligand residence times than those obtained at pH 7.4.Conclusions and Implications: These studies suggest that rapid VEGF-A isoform-induced receptor endocytosis shortens agonist residence times on the receptor (1/koff) as VEGFR2 moves from the plasma membrane to intracellular endosomes

    A functional selection of viral genetic elements in cultured cells to identify hepatitis C virus RNA translation inhibitors†

    Get PDF
    We developed a functional selection system based on randomized genetic elements (GE) to identify potential regulators of hepatitis C virus (HCV) RNA translation, a process initiated by an internal ribosomal entry site (IRES). A retroviral HCV GE library was introduced into HepG2 cells, stably expressing the Herpes simplex virus thymidine kinase (HSV-TK) under the control of the HCV IRES. Cells that expressed transduced GEs inhibiting HSV-TK were selected via their resistance to ganciclovir. Six major GEs were rescued by PCR on the selected cell DNA and identified as HCV elements. We validated our strategy by further studying the activity of one of them, GE4, encoding the 5′ end of the viral NS5A gene. GE4 inhibited HCV IRES-, but not cap-dependent, reporter translation in human hepatic cell lines and inhibited HCV infection at a post-entry step, decreasing by 85% the number of viral RNA copies. This method can be applied to the identification of gene expression regulators

    The development and validation of the Dementia Quality of Life Scale for Older Family Carers (DQoL-OC)

    Get PDF
    Purpose: Little is known about how caregiving affects the quality of life (QoL) of older family carers and no dementia and age-specific QoL scale is available for use with this population. This study aimed to develop and validate a unique dementia caregiving- and age-specific tool – the ‘Dementia Quality of Life Scale for Older Family Carers’ (DQoL-OC). Methods: The scale items were identified in focus groups with older family carers in the UK. Content and face validity were evaluated by a panel of six experts. A set of 100 items assessed on a 5-point Likert scale was tested with 182 older family carers. Test–re-test reliability was conducted with 18 individuals. Exploratory factor analysis was used to identify the QoL model and reduce the number of scale items. Convergent construct validity and internal consistency were also established. Results: A one-factor solution containing 22 items was obtained. Test–re-test reliability (lower bound r = 0.835; p < 0.001), internal consistency (Cronbach's α = 0.936), and convergent construct validity were established. Significantly lower levels of QoL were found in female older carers; those who perceived their relatives with dementia as being at the earlier stages of the disease and with unstable dementia symptoms; those providing care more hours per day and more days per week; and those in younger-old age. Conclusions: The DQoL-OC is a valid and reliable scale that will be useful for research and in clinical practice with older family carers of people with dementia. These study results will inform future health and social care aiming to improve life quality for this overlooked population of carers

    Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA

    Get PDF
    Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements

    Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors

    Get PDF
    The Ras/MAPK pathway is critical for human development and plays a central role in the formation and progression of most cancers. Children born with germ-line mutations in BRAF, MEK1 or MEK2 develop cardio-facio-cutaneous (CFC) syndrome, an autosomal dominant syndrome characterized by a distinctive facial appearance, heart defects, skin and hair abnormalities and mental retardation. CFC syndrome mutations in BRAF promote both kinase-activating and kinase-impaired variants. CFC syndrome has a progressive phenotype, and the availability of clinically active inhibitors of the MAPK pathway prompts the important question as to whether such inhibitors might be therapeutically effective in the treatment of CFC syndrome. To study the developmental effects of CFC mutant alleles in vivo, we have expressed a panel of 28 BRAF and MEK alleles in zebrafish embryos to assess the function of human disease alleles and available chemical inhibitors of this pathway. We find that both kinase-activating and kinase-impaired CFC mutant alleles promote the equivalent developmental outcome when expressed during early development and that treatment of CFC-zebrafish embryos with inhibitors of the FGF-MAPK pathway can restore normal early development. Importantly, we find a developmental window in which treatment with a MEK inhibitor can restore the normal early development of the embryo, without the additional, unwanted developmental effects of the drug

    Circulating Hepatitis B Surface Antigen Particles Carry Hepatocellular microRNAs

    Get PDF
    Hepatitis B virus (HBV) produces high quantities of subviral surface antigen particles (HBsAg) which circulate in the blood outnumbering virions of about 1\103–6 times. In individuals coinfected with the defective hepatitis Delta virus (HDV) the small HDV-RNA-genome and Delta antigen circulate as ribonucleoprotein complexes within HBsAg subviral particles. We addressed the question whether subviral HBsAg particles may carry in the same way cellular microRNAs (miRNAs) which are released into the bloodstream within different subcellular forms such as exosomes and microvescicles. Circulating HBsAg particles were isolated from sera of 11 HBsAg carriers by selective immunoprecipitation with monoclonal anti-HBs-IgG, total RNA was extracted and human miRNAs were screened by TaqMan real-time quantitative PCR Arrays. Thirty-nine human miRNAs were found to be significantly associated with the immunoprecipitated HBsAg, as determined by both comparative DDCT analysis and non-parametric tests (Mann-Whitney, p<0.05) with respect to controls. Moreover immunoprecipitated HBsAg particles contained Ago2 protein that could be revealed in ELISA only after 0.5% NP40. HBsAg associated miRNAs were liver-specific (most frequent = miR-27a, miR-30b, miR-122, miR-126 and miR-145) as well as immune regulatory (most frequent = miR-106b and miR-223). Computationally predicted target genes of HBsAg-associated miRNAs highlighted molecular pathways dealing with host-pathoge

    Promotion of Hendra virus replication by microRNA 146a

    Full text link
    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-&kappa;B-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-&kappa;B activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-&kappa;B activity aids Hendra virus replication. Furthermore, overexpression of the I&kappa;B superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease

    Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs

    Get PDF
    MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. Here, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis, we show that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells
    corecore