451 research outputs found

    Theoretical basis for at-many-stations hydraulic geometry

    Get PDF
    Citation: Gleason, C. J., & Wang, J.(2015). Theoretical basis for at-many-stations hydraulic geometry. Geophysical Research Letters, 42(17), 7107-7114. doi:10.1002/2015gl064935At-many-stations hydraulic geometry (AMHG) is a recently discovered set of geomorphic relationships showing that the empirical parameters of at-a-station hydraulic geometry (AHG) are functionally related along a river. This empirical conclusion seemingly refutes previous decades of research defining AHG as spatially independent and site specific. Furthermore, AMHG was the centerpiece of an unprecedented recent methodology that successfully estimated river discharge solely from satellite imagery. Despite these important implications, AMHG has remained an empirical phenomenon without theoretical explanation. Here we provide the mathematical basis for AMHG, showing that it arises when independent AHG curves within a reach intersect near the same values of discharge and width, depth, or velocity. The strength of observed AMHG is determined by the degree of this convergence. Finally, we show that AMHG enables discharge estimation by defining a set of possible estimated discharges that often match true discharges and propose its future interpretation as a fluvial index

    Little impact of Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain

    Get PDF
    The ubiquitous lakes across China's Yangtze Plain (YP) are indispensable freshwater resources sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of ∌10%), yet its mechanism remains contentious. Here, we uncover the impacts of climate variability and anthropogenic activities including i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD) and ii) human water consumption in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute marginal fraction (∌10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ∌5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human water consumption and TGD-related net channel erosion are already comparable to that of TGD's flow regulation, and may continue to grow as crucial anthropogenic factors to future YP lake conservation

    Little impact of Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain

    Get PDF
    The ubiquitous lakes across China's Yangtze Plain (YP) are indispensable freshwater resources sustaining ecosystems and socioeconomics for nearly half a billion people. Our recent survey revealed a widespread net decline in the total YP lake inundation area during 2000–2011 (a cumulative decrease of ∌10%), yet its mechanism remains contentious. Here, we uncover the impacts of climate variability and anthropogenic activities including i) Yangtze flow and sediment alterations by the Three Gorges Dam (TGD) and ii) human water consumption in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that climate variability is the dominant driver of this decadal lake decline, whereas studied human activities, despite varying seasonal impacts that peak in fall, contribute marginal fraction (∌10–20% or less) to the interannual lake area decrease. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ∌5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of human water consumption and TGD-related net channel erosion are already comparable to that of TGD's flow regulation, and may continue to grow as crucial anthropogenic factors to future YP lake conservation

    Relationship between river size and nutrient removal

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L06410, doi:10.1029/2006GL025845.We present a conceptual approach for evaluating the biological and hydrological controls of nutrient removal in different sized rivers within an entire river network. We emphasize a per unit area biological parameter, the nutrient uptake velocity (Μf), which is mathematically independent of river size in benthic dominated systems. Standardization of biological parameters from previous river network models to Μf reveals the nature of river size dependant biological activity in these models. We explore how geomorphic, hydraulic, and biological factors control the distribution of nutrient removal in an idealized river network, finding that larger rivers within a basin potentially exert considerable influence over nutrient exports.This work was funded by NASA-IDS (NNG04GH75G), NSF-LTER OCE-9726921, and NOAA (NA17RJ2612- 344 to Princeton U.)

    A global assessment of the impact of climate change on water scarcity

    Get PDF
    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets

    Climate and southern Africa's water-energy-food nexus

    Get PDF
    In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water

    Global threats to human water security and river biodiversity

    Full text link
    Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity

    Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions

    Get PDF
    Ecologists and economists have long talked past each other, but climate change presents similar threats to both groups. Water may serve as the best means of finding a common cause and building a new vision of ecological and economic sustainability, especially in the developing world
    • 

    corecore