1,310 research outputs found
Under the Circumstances (Place, Time, Manner, etc.)
Proceedings of the Twentieth Annual Meeting of the Berkeley Linguistics
Society: General Session Dedicated to the Contributions of Charles J.
Fillmore (1994
Full regularity for a C*-algebra of the Canonical Commutation Relations. (Erratum added)
The Weyl algebra,- the usual C*-algebra employed to model the canonical
commutation relations (CCRs), has a well-known defect in that it has a large
number of representations which are not regular and these cannot model physical
fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs
of a countably dimensional symplectic space (S,B) and such that its
representation set is exactly the full set of regular representations of the
CCRs. This construction uses Blackadar's version of infinite tensor products of
nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised
group algebra, explained below) for the \sigma-representation theory of the
abelian group S where \sigma(.,.):=e^{iB(.,.)/2}.
As an easy application, it then follows that for every regular representation
of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct
integral decomposition of it into irreducible regular representations (a known
result).
An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape
Analysis and quantification of the diversities of aerosol life cycles within AeroCom
Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface.
The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC.
The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain.
Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times
Language and learning science in South Africa
South Africa is a multilingual country with 11 official languages. However, English dominates as the language of access and power and although the Language-in- Education Policy (1997) recommends school language policies that will promote additive bilingualism and the use of learners' home languages as languages of learning and teaching, there has been little implementation of these recommendations by schools. This is despite the fact that the majority of learners do not have the necessary English language proficiency to successfully engage with the curriculum and that teachers frequently are obliged to resort to using the learners' home language to mediate understanding. This research investigates the classroom language practices of six Grade 8 science teachers, teaching science through the medium of English where they and their learners share a common home language, Xhosa. Teachers' lessons were videotaped, transcribed and analysed for the opportunities they offered learners for language development and conceptual challenge. The purpose of the research is to better understand the teachers' perceptions and problems and to be able to draw on examples of good practice, to inform teacher training and to develop a coherent bilingual approach for teaching science through the medium of English as an additional language
'Riots engulfed the city':an experimental study investigating the legitimating effects of fire metaphors in discourses of disorder
In Cognitive Linguistic Critical Discourse Studies (CL-CDS), metaphor is identified as a key index of ideology and an important device in the legitimation of social action. From this perspective, metaphor is a cognitive-semiotic operation, invoked by metaphorical expressions in discourse, in which a source frame is mobilised to provide a template for sense-making inside a target frame, leading to particular framing effects. However, the extent to which metaphors in discourse genuinely activate an alternative frame and thereby achieve framing effects has recently been subject to question. Amid calls for more empirical forms of analysis in Critical Discourse Studies, the paper reports two experiments testing the legitimating framing effects of fire metaphors in discourses of disorder. Results show that images of fire and fire metaphors in the absence of competing images facilitate support for police use of water cannon in response to social unrest. The study not only justifies attention to metaphor in CL-CDS but similar effects across semiotic modalities are interpreted as evidence in support of simulation-based theories of metaphor
The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment
The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions.
The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.
These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies
- …