The Weyl algebra,- the usual C*-algebra employed to model the canonical
commutation relations (CCRs), has a well-known defect in that it has a large
number of representations which are not regular and these cannot model physical
fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs
of a countably dimensional symplectic space (S,B) and such that its
representation set is exactly the full set of regular representations of the
CCRs. This construction uses Blackadar's version of infinite tensor products of
nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised
group algebra, explained below) for the \sigma-representation theory of the
abelian group S where \sigma(.,.):=e^{iB(.,.)/2}.
As an easy application, it then follows that for every regular representation
of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct
integral decomposition of it into irreducible regular representations (a known
result).
An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape