143 research outputs found

    Magnetic and electric phase control in epitaxial EuTiO3_3 from first principles

    Full text link
    We propose a design strategy - based on the coupling of spins, optical phonons, and strain - for systems in which magnetic (electric) phase control can be achieved by an applied electric (magnetic) field. Using first-principles density-functional theory calculations, we present a realization of this strategy for the magnetic perovskite EuTiO3_3.Comment: Significantly revised for clarit

    Broken parity and a chiral ground state in the frustrated magnet CdCr2O4

    Get PDF
    We present a model describing the lattice distortion and incommensurate magnetic order in the spinel CdCr2O4, a good realization of the Heisenberg "pyrochlore" antiferromagnet. The magnetic frustration is relieved through the spin-Peierls distortion of the lattice involving a phonon doublet with odd parity. The distortion stablizes a collinear magnetic order with the propagation wavevector q=2\pi(0,0,1). The lack of inversion symmetry makes the crystal structure chiral. The handedness is transferred to magnetic order by the relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and q shifted to 2\pi(0,\delta,1).Comment: Incremental changes in response to referee report

    Strain-induced ferroelectricity in CaTiO3_3 from first principles

    Full text link
    First principles calculations are used to investigate the effects of epitaxial strain on the structure of the perovskite oxide CaTiO3_3, with particular focus on the stabilization of a ferroelectric phase related to a polar instability hidden in the orthorhombic equilibrium bulk PbnmPbnm structure but found in previous first-principles studies of the ideal cubic perovskite high-symmetry reference structure. At 1.5% strain, we find an epitaxial orientation transition between the abab-ePbnmePbnm phase, favored for compressive strains, and the cc-ePbnmePbnm phase. For larger tensile strains, a polar instability develops in the cc-ePbnmePbnm phase and an epitaxial-strain-induced ferroelectric phase is obtained with polarization along a direction with respect to the primitive perovskite lattice vectors of the square substrate.Comment: 4 pages, 2 figure

    Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO3_3

    Full text link
    We employ reactive molecular-beam epitaxy to synthesize the metastable perovskite SrIrO3_{3} and utilize {\it in situ} angle-resolved photoemission to reveal its electronic structure as an exotic narrow-band semimetal. We discover remarkably narrow bands which originate from a confluence of strong spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO6_6 octahedral rotations. The partial occupation of numerous bands with strongly mixed orbital characters signals the breakdown of the single-band Mott picture that characterizes its insulating two-dimensional counterpart, Sr2_{2}IrO4_{4}, illustrating the power of structure-property relations for manipulating the subtle balance between spin-orbit interactions and electron-electron interactions

    Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3

    Full text link
    In this article we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can "switch on" the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization M is coupled to the polarization P via a trilinear free energy contribution of the form P(M x L), where L is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue on Multiferroic

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance

    Blockade of the mental nerve for lower lip surgery as a safe alternative to general anesthesia in two very old patients

    Get PDF
    Purpose: Regional anesthesia is gaining popularity with anesthesiologists as it offers superb postoperative analgesia. However, as the sole anesthetic technique in high-risk patients in whom general anesthesia is not preferred, some regional anesthetic possibilities may be easily overlooked. By presenting two cases of very old patients with considerable comorbidities, we would like to bring the mental nerve field block under renewed attention as a safe alternative to general anesthesia and to achieve broader application of this simple nerve block. Patients and methods: Two very old male patients(84 and 91 years) both presented with an ulcerative lesion at the lower lip for which surgical removal was scheduled. Because of their considerable comorbidities and increased frailty, bilateral blockade of the mental nerve was considered superior to general anesthesia. As an additional advantage for the 84-year-old patient, who had a pneumonectomy in his medical history, the procedure could be safely performed in a beach-chair position to prevent atelectasis and optimize the ventilation/perfusion ratio of the single lung. The mental nerve blockades were performed intraorally in a blind fashion, after eversion of the lip and identifying the lower canine. A 5 mL syringe with a 23-gauge needle attached was passed into the buccal mucosa until it approximated the mental foramen, where 2 mL of lidocaine 2% with adrenaline 1:100.000 was injected. The other side was anesthetized in a similar fashion. Results: Both patients underwent the surgical procedure uneventfully under a bilateral mental nerve block and were discharged from the hospital on the same day. Conclusion: A mental nerve block is an easy-to-perform regional anesthetic technique for lower lip surgery. This technique might be especially advantageous in the very old, frail patient

    Magnetodielectric coupling and phonon properties of compressively strained EuTiO3 thin films deposited on LSAT

    Get PDF
    Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal symmetry have been deposited on (001) (LaAlO3)_0.29-(SrAl_{1/2}Ta_{1/2}O3)_0.71 (LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons ofthe films have been investigated as a function of temperature and magnetic field by means of infrared reflectance spectroscopy. All three infrared active phonons show strongly stiffened frequencies compared to bulk EuTiO3 in accordance with first principles calculations. The phonon frequencies exhibit gradual softening on cooling leading to an increase in static permittivity. A new polar phonon with frequency near the TO1 soft mode was detected below 150 K. The new mode coupled with the TO1 mode was assigned as the optical phonon from the Brillouin zone edge, which is activated in infrared spectra due to an antiferrodistortive phase transition and due to simultaneous presence of polar and/or magnetic nanoclusters. In the antiferromagnetic phase we have observed a remarkable softening of the lowest-frequency polar phonon under an applied magnetic field, which qualitatively agrees with first principles calculations. This demonstrates the strong spin-phonon coupling in EuTiO3, which is responsible for the pronounced dependence of its static permittivity on magnetic field in the antiferromagnetic phase.Comment: Submitted to Phys. Rev.
    • …
    corecore