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We present a model describing the lattice distortion and incommensurate magnetic order in the spinel
CdCr2O4, a good realization of the Heisenberg “pyrochlore” antiferromagnet. The magnetic frustration is
relieved through the spin-Peierls distortion of the lattice involving a phonon doublet with odd parity. The
distortion stabilizes a collinear magnetic order with the propagation wave vector q=2��0,0 ,1�. The lack of
inversion symmetry makes the crystal structure chiral. The handedness is transferred to magnetic order by the
relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and
q shifted to 2��0,� ,1�.
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Frustration, defined as the presence of competing interac-
tions, often leads to unusual effects in magnets, particularly
when it is combined with a high symmetry.1 A case in point
is the antiferromagnet on the “pyrochlore” lattice that has a
very high degeneracy of the ground state if magnetic inter-
actions are restricted to nearest neighbors.2 At the lowest
temperatures such a magnet is expected to retain a finite
entropy per unit volume, as was indeed observed in a group
of pyrochlore magnets known as “spin ice.”3 It is also well
known that frustrated magnets with a large degeneracy are
prone to lattice distortions that reduce the frustration by low-
ering the symmetry.4,5 This effect was observed in antiferro-
magnetic spinel ZnCr2O4.6,7 Unfortunately, the distortion in
this compound is rather intricate8: it involves at least four
phonon modes with wave numbers 2�� 1

2 , 1
2 , 1

2
�. Magnetic or-

der in the distorted lattice is even more complex: the mag-
netic unit cell is said to contain as many as 64 spins.9 As a
result, the basic story of a flexible pyrochlore10 does not
apply to ZnCr2O4 and thus remains to be fully tested. Recent
experimental characterization of another spinel CdCr2O4 by
Chung et al.11 presents us with an opportunity to do so.

Spinels ACr2O4 with various nonmagnetic ions on the A
sites are nearly ideal S=3/2 Heisenberg antiferromagnets
with nearest-neighbor exchange on the highly frustrated py-
rochlore lattice.6,11,12 The size of the nonmagnetic ion deter-
mines the Cr-Cr distance and thereby the strength of ex-
change: 4.5 meV for Zn,6 1 meV for Cd,11 and a fraction of
a meV for Hg.12

CdCr2O4 undergoes a spin-Peierls-like lattice distortion4,5

at Tc=7.8 K.11 The lattice symmetry is lowered from

cubic �Fd3̄m� to tetragonal �exact space group unknown�
with lattice constants a=b�c. The unit cell is elongated:
�c−a� /c�5�10−3. In contrast, the lattice is flattened,
�c−a� /c�−1.5�10−3, in ZnCr2O4. It is remarkable that dis-
tortions in two very similar compounds have opposite signs.
It is also surprising that the magnitude of the distortion is
larger in the compound with weaker magnetic interactions.
This happens, apparently, because the quantity �c−a� /c mea-
sures the uniform part of the distortion only. There are
indications6,7 that the nonuniform distortions in ZnCr2O4 are
much larger than the uniform component. We will work un-
der the assumption that the lattice distortion in CdCr2O4 low-

ers the point-group symmetry of the lattice but leaves the
translational symmetry intact.10

The spins in CdCr2O4 remain disordered well below the
Curie-Weiss temperature and order simultaneously with the
distortion. Chung et al.11 interpret the magnetic order as an
incommensurate spiral with the wave vector q=2��0,� ,1�
and the magnetization in the ac plane. They offer two or-
dered structures compatible with the magnetic Bragg peaks.
In one the spins on every tetrahedron are nearly orthogonal
�say, close to directions +x̂, +ẑ, −x̂, and −ẑ on some tetrahe-
dra�, in the other they are nearly collinear �say, two along +x̂
and two along −x̂�. Since ��0.09 is small, we may treat it as
an effect of a weak perturbation and begin our analysis at the
commensurate point �=0.

The Landau theory of a deformable pyrochlore
antiferromagnet10 yields a variety of magnetically ordered
states, with the proposed orthogonal and collinear states
among them. Thus, from the symmetry viewpoint, both can-
didate orders are plausible. However, a more “microscopic”
treatment based on the actual physics of the spin-lattice cou-
pling �and as we will see, first-principles total energy calcu-
lations� invariably yields collinear ground states. Stabiliza-
tion of orthogonal ground states requires fairly exotic
interactions, such as a four-spin exchange strongly coupled
to the lattice.10 We therefore abandon the orthogonal state
and work with the collinear one.

To simplify the calculations, we assume a clear separation
of relevant energy scales. We treat the nearest-neighbor
Heisenberg exchange as the strongest interaction; its minimi-
zation requires that the total spin of every tetrahedron be
zero, which still leaves a high-dimensional continuum of
ground states.2 A weaker spin-lattice coupling selects from
this continuum a collinear ground state. The weakest
Dzyaloshinskii-Moriya �DM� interaction induces a slight
misalignment of the spins and—in the presence of parity
breaking—generates a spiral with a long period. In this paper
we outline our findings, postponing a detailed account to a
future presentation.13

In a flexible pyrochlore antiferromagnet, the spin-lattice
coupling is an efficient way to relieve spin frustration.4,5 The
magnetoelastic coupling arises from the dependence of ex-
change on the ion displacements x� of spins: Eme
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= ��Jij /�x���Si ·S j�x�. Integrating out the phonons generates
an effective biquadratic exchange −�i,j�Si ·S j�2 favoring col-
linear ground states. Alternatively, this interaction can be
written in terms of the magnetoelastic force f= �f1 , f2� whose
components are linear combinations of the bond variables
Si ·S j transforming as an irreducible doublet E of the tetra-
hedral group Td.10 For a single tetrahedron, the magnetoelas-
tic energy is −J�2�f�2 /2k, where J� is a derivative of the ex-
change with respect to ionic coordinates and k is the elastic
constant of the vibrational doublet E. The energy is lowest in
a state with a tetragonal distortion, two weak and four strong
bonds, and collinear spins.5

When a distortion preserves the translational symmetry of
the crystal, generalization to an infinte lattice is
straightforward.10 The existence of inequivalent tetrahedra
with two different orientations �I and II in Fig. 1� adds in-
version to the symmetry group enlarging it to Td � I=Oh. The
magnetoelastic energy of a primitive unit cell �four Cr ions�
is

Eme = − Kg�g�2/4 − Ku�u�2/4, �1�

where g= fI+ fII and u= fI− fII are the even and odd doublets
of bond variables whose coupling constants are Kg,u
=J�2 /kg,u, where kg and ku are the elastic constants of the
even and odd distortion doublets. For Kg�Ku the lattice un-
dergoes a uniform tetragonal distortion with a=b�c; the
space group is I41/amd. For Kg�Ku the distortion has both
even and odd components: tetrahedra of types I and II are

flattened along the a and b directions, respectively; the lattice
is elongated overall, a=b�c; the space group I4122 lacks
inversion symmetry. In both cases the ground states are col-
linear �Figs. 5 and 6 of Ref. 10�.

The antiferromagnetic order on the pyrochlore lattice can
be described by three staggered magnetizations Li defined on
tetrahedra of type I: L1= �S0+S1−S2−S3� /4S, and so on.
The vanishing of the total spin of a tetrahedron in a ground
state MI=�i=0

3 Si=0 makes the three Néel vectors Li orthogo-
nal to each other and imposes a constraint on their lengths:
�i=1

3 Li
2=1. In the state shown in Fig. 1, L2=L3=0 and L1

= n̂1eiq·r with q=2��0,0 ,1�; n̂1 is an arbitrary unit vector.
This is also consistent with the data11 if we take the com-
mensurate limit �→0.

Spiral magnetic order can arise when competing interac-
tions destabilize a collinear ground state. That can happen
when, e.g., the second-neighbor exchange is comparable to
the nearest-neighbor one. However, further-neighbor ex-
changes are rather weak in spinels ACr2O4 and we have
checked that they do not destabilize collinear order �see be-
low�.

Alternatively, spiral magnetic order may reflect a chiral
nature of the underlying lattice. The handedness is trans-
ferred from the lattice to the spins by the relativistic spin-
orbit coupling ��L ·S�. Cubic spinels are nonchiral: the space

group Fd3̄m includes inversion. However, parity is broken in
the presence of the odd distortion Eu. A chiral nature of the
distorted lattice becomes evident if one examines the loca-
tions of frustrated bonds shown as dashed lines in Fig. 1:
they form spirals of the same handedness. Since the symme-
try breaking is spontaneous, experiments should reveal both
right- and left-handed magnetic spirals originating in differ-
ent domains.

In a Heisenberg magnet the spin-orbit interaction is mani-
fested as the DM term Dij · �Si�S j	.14 Elhajal et al.15 have
determined the vectors Dij for the pyrochlore lattice up to a
multiplicative constant. In a single tetrahedron, the DM term
is

EDM = − DS2�â · L2 � L3 + b̂ · L3 � L1 + ĉ · L1 � L2� .

�2�

Using the commensurate state as a starting point we pa-
rametrize the magnetic structure as

Li�r� = eiq·r�i�r�n̂i�r� , �3�

where n̂i�r� and �i�r� are the directions and magnitudes of
the staggered magnetizations. �Note that the three unit vec-
tors n̂i�r� are mutually orthogonal.	 These parameters vary
slowly in space. Proximity to the collinear state means that
�2 and �3 are small, while �1�1− ��2

2+�3
2� /2. The stag-

gered magnetizations �3� are defined for tetrahedra of type I.
Tetrahedra of type II become slaves: their magnetic state is
encoded in the staggered magnetizations of the four sur-
rounding tetrahedra of type I. The vanishing of the total mag-
netization of type-II tetrahedra yields the following con-
straint:

0

0

2

2

3

3

a

b

c

1

I

II

FIG. 1. �Color online� The collinear ground state stabilized by
the q=0 Eu phonon �adapted from Fig. 6 of Ref. 10�. Tetrahedra of
types I and II are flattened along the a and b directions, respec-
tively. Solid �dashed� lines indicate satisfied �frustrated� bonds.
Frustrated bonds form spirals of the same handedness �left handed
in this case�.
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MII = �3n̂3 − �yn̂1/4 = 0 . �4�

From it we infer that spatial derivatives of n̂1 are of the same
order as �2 and �3. The Néel magnetizations of a type-II
tetrahedron are, to lowest orders,

L1
II = �2n̂2 − �zn̂1/4, L2

II = n̂1, L3
II = − �xn̂1/4. �5�

Upon adding contributions from tetrahedra of both types
and using Eq. �4� we obtain the DM energy

EDM = − DS2n̂1 · �â � �xn̂1 + b̂ � �yn̂1 − ĉ � �zn̂1�/4. �6�

The terms linear in the spatial derivatives make a uniform
state unstable against the formation of a spiral.16 The pitch of
the spiral depends on the stiffness of the staggered magneti-
zation, which is ordinarily determined by the strength of ex-
change. However, the large degeneracy of the pyrochlore an-
tiferromagnet with nearest-neighbor exchange leads to a
vanishing stiffness: indeed, apart from the constraint �4�, the
direction of n̂1 can vary arbitrarily in space. The stiffness is
therefore determined by the magnetoelastic coupling and by
weak exchange interactions beyond nearest neighbors. We
discuss the magnetoelastic coupling first.

A spiral magnetic state represents a deviation from the
collinear structure and thus increases the magnetoelastic en-
ergy. On symmetry grounds, the increase should be quadratic
in the gradients of n̂1 and thus may yield a finite stiffness.
For simplicity, we first consider only the odd distortions,
effectively setting kg=	 and Kg=0 in Eq. �1�, and discuss the
influence of the even phonon later. The magnetoelastic en-
ergy can then be expressed in terms of the odd doublet as
Eme=−Kuu ·�u /2, where u=4S2�0,1� is the value in the
commensurate ground state and �u is a small deviation. As a
result, we obtain the magnetoelastic energy density as a func-
tion of �i and the gradients of n̂i. However, on account of the
constraint �4�, �3= n̂3 ·�yn̂1 /4. Likewise, minimization of the
energy with respect to �2 yields

�2 = n̂2 · �zn̂1/8. �7�

The energy cost associated with the spiral is then

Eme = Ku�S4/4����xn̂1�2 + ��yn̂1�2 + 2��zn̂1�2 − �n̂2 · �zn̂1�2	 .

�8�

The total energy of a spiral state is the sum of the DM
energy �6� and the magnetoelastic energy �8�. Its minimiza-
tion yields three simple spiral states in which n̂1 rotates about
one of the principal axes staying in the plane perpendicular
to it, e.g., n̂1= (0,cos 
�x� , sin 
�x�). The energy density of
all three states is the same,

E = − DS2
� + KuS4
�2/4, �9�

where, in this case, 
�=�x
. The pitch of the spiral is


� = 2�� = 2D/S2Ku. �10�

A spiral state with spins rotating about the a axis is shown
in Fig. 2�a�. On account of Eqs. �4� and �7�, we have �2
=�3=0, so that type-I tetrahedra still have collinear spins.

The spins on type-II tetrahedra are coplanar with the twist
angle of 
� /4=�� /2. The spiral magnetic order produces
Bragg scattering at q=2��−� ,0 ,1�.

Figure 2�b� shows a spiral state twisting about the b axis.
This time tetrahedra of type I have coplanar spins with the
twist angle �3=
� /4=�� /2, while tetrahedra of type II have
collinear spins, as can be checked by using Eq. �5�. This
spiral is related to the previous one by a lattice symmetry
�the inversion and a � /2 rotation in the xy plane�. It pro-
duces a magnetic Bragg peak at q=2��0,� ,1�, as observed
by Chung et al.11 The measured value11 ��0.09 is consistent
with a DM interaction that is weak relative to the magneto-
elastic coupling: D /KuS2�0.28.

The third spiral solution is shown in Fig. 2�c�. It has the
wave vector q=2��0,0 ,1+��; the spins are rotating around
the c axis. The twist angle is �2=�� /4.

The degeneracy of the three spiral ground states is lifted
when other perturbations are taken into account. A uniform
Eg distortion and the further-neighbor exchanges J2 and J3
add energy terms

Kg�S4/4����xn̂1�2 + ��yn̂1�2	 + �4J3 − 2J2�S2��zn̂1�2.

�11�

Depending on these coupling constants, the system will pre-
fer the spiral states shown either in Figs. 2�a� and 2�b� or in
Fig. 2�c�.

To test this theory, we performed density-functional cal-
culations within the local spin density approximation
LSDA+U method17 using projector augmented-wave poten-
tials as implemented in the Vienna ab initio Simulation
Package.18,19 Values for the on-site Coulomb and exchange
parameters, U=3 eV and J=0.9 eV, were chosen as previ-
ously described.20 The results are not particularly sensitive to
reasonable variations of U �±1 eV�. First we performed full
structural relaxations in the 14-atom cubic unit cell, space

group Fd3̄m. Chromium ions were initialized with parallel
spins in order to retain Oh symmetry throughout the struc-
tural relaxation. The relaxed lattice constant a=8.54 Å was
found to be in excellent agreement with a=8.59 Å measured
by Chung et al.11

Estimates of exchange constants were obtained by com-
paring the total energy for several simple spin configurations.
To prevent contamination by magnetoelastic terms �1�, the
lattice structure was frozen in the reference cubic state with
a=8.54 Å. That procedure yielded J1=0.5 meV, J2

(a)
c

b (b)
a

c (c)
b

a

II

I

II II

II

FIG. 2. �Color online� Spiral magnetic orders with the spins
rotating about �a� the a, �b� the b, and �c� the c axis.
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�0 meV, and J3=0.15 meV. The resulting Curie-Weiss tem-
perature �CW=−�1/3kB�S�S+1��iziJi=−70 K compares well
to the experimental values ranging from −70 to −90 K.8,11

To quantify the magnetoelastic effects, we performed full
structural relaxations for three spin configurations: �i� a col-
linear state with a pure Eg distortion and magnetic wave
vector q=0 shown in Fig. 5 of Ref. 10; �ii� a coplanar state
with a pure Eg distortion and q=2��0,0 ,1�; and �iii� a
collinear state with a mixed Eu+Eg distortion and
q=2��0,0 ,1� shown in Fig. 1. States �ii� and �iii� are the
commensurate limits ��→0� of the states displayed in Figs.
3�c� and 3�d� of Ref. 11; they have a doubled unit cell �28
atoms�. The total energy was lowest in the collinear state
�iii�, as posited above. The Eg component of the distortion is
tetragonal. Its value, �c−a� /c= +5.1�10−3, is remarkably
close to the experimental one.11 Reduction of the energy as-
sociated with the structural relaxation depends on the spin
state according to Eq. �1�. From the data obtained in the three
reference states we deduced the magnetoelastic constants
Ku=0.15 meV�Kg=0.13 meV. Quantitatively, the spin-
lattice coupling is weaker than exchange, although not by
much: KuS2 /J1=0.67.

The ab initio calculations back up the conclusions ob-
tained analytically. The phonon doublet Eu indeed turned out
to be softer than the even distortion Eg confirming the selec-
tion of the collinear state of Fig. 1. The competition between
the three candidate spiral states is decided by the ratio of the
coupling constants in Eq. �11�. Because J3 is quite large, the
last term is prohibitively expensive and the spiral twists
along either x or y, as indeed observed.11

A large value of J3 may cast doubts on the applicability of
Eq. �11�, which treats that coupling as a small perturbation.
However, it turns out that our conclusions in that regard re-
main valid for arbitrarily large values of J3. Luckily for us,
the spiral states depicted in Figs. 2�a� and 2�b� minimize the
third-neighbor exchange exactly for any value of the pitch
�.13 The third spiral state increases the J3 term and is thus
suppressed.

To appreciate the unusual microscopic origin of the mag-
netic spiral, it is helpful to compare it to the standard sce-
nario exemplified by the ferroelectric BiFeO3.21 In the latter
case, the pitch of the magnetic spiral is proportional to an
order parameter measuring the violation of parity, such as the
electric dipolar moment. In contrast, in CdCr2O4 the stron-
gest violation of parity comes not so much from the lattice
distortion as from the magnetically ordered state itself: frus-
trated bonds form spirals of the same handedness �Fig. 1�.
The corresponding order parameter10 the odd doublet of
bond variables u—is a dimensionless quantity of order 1,
which is why the presence of an order parameter is not im-
mediately evident in Eq. �10�. Without parity violation, the
DM interaction alone would not generate a magnetic helix.

Note added in proof. The three staggered magnetizations
were first introduced in Ref. 22.
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