573 research outputs found

    Millimeter imaging of HD 163296: probing the disk structure and kinematics

    Full text link
    We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 Msun. The disk inclination with respect to the line of sight is 46+-4 deg with a position angle of 128+-4 deg. The slope of the dust opacity measured between 0.87 and 7 mm (beta=1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion.Comment: Accepted for publication on A&A, 16 page

    Assessing the spin-orbit obliquity of low-mass planets in the breaking the chain formation model: A story of misalignment

    Full text link
    The spin-orbit obliquity of a planetary system constraints its formation history. A large obliquity may either indicate a primordial misalignment between the star and its gaseous disk or reflect the effect of different mechanisms tilting planetary systems after formation. Observations and statistical analysis suggest that system of planets with sizes between 1 and 4 R⊕_{\oplus} have a wide range of obliquities (∼0−30∘\sim0-30^{\circ}), and that single- and multi-planet transiting have statistically indistinguishable obliquity distributions. Here, we revisit the ``breaking the chains'' formation model with focus in understanding the origin of spin-orbit obliquities. This model suggests that super-Earths and mini-Neptunes migrate close to their host stars via planet-disk gravitational interactions, forming chain of planets locked in mean-motion resonances. After gas-disk dispersal, about 90-99\% of these planetary systems experience dynamical instabilities, which spread the systems out. Using synthetic transit observations, we show that if planets are born in disks where the disk angular momentum is virtually aligned with the star's rotation spin, their final obliquity distributions peak at about ∼\sim5 degrees or less, and the obliquity distributions of single and multi-planet transiting systems are statistically distinct. By treating the star-disk alignment as a free-parameter, we show that the obliquity distributions of single and multi-planet transiting systems only become statistically indistinguishable if planets are assumed to form in primordially misaligned natal disks with a ``tilt'' distribution peaking at ≳\gtrsim10-20 deg. We discuss the origin of these misalignments in the context of star formation and potential implications of this scenario for formation models.Comment: 11 pages, 9 figures, 2 tables. Accepted for publication in MNRA

    Millimetre spectral indices of transition disks and their relation to the cavity radius

    Get PDF
    Transition disks are protoplanetary disks with inner depleted dust cavities and excellent candidates to investigate the dust evolution under the existence of a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. We look for evidence of the presence of millimetre dust particles in transition disks by measuring their spectral index with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. We present the 3mm photometric observations carried out with PdBI of four transition disks: LkHa330, UXTauA, LRLL31, and LRLL67. We use available values of their fluxes at 345GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compare the observations with two kind of models. In the first set of models, we consider coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radius and with power-law dust size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. We show that the integrated spectral index is higher for transition disks than for regular protoplanetary disks. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to distinguish between the dust trapping scenario and the truncated disk case.Comment: Accepted for publication in A&A, including language editio

    miR-SEA: miRNA Seed Extension based Aligner Pipeline for NGS Expression Level Extraction

    Get PDF
    The advent of Next Generation Sequencing (NGS) technology has enabled a new major approach for micro RNAs (miRNAs) expression profiling through the so called RNA-Sequencing (RNA-Seq). Different tools have been developed in the last years in order to detect and quantify miRNAs, especially in pathological samples, starting from the big amount of data deriving from RNA sequencing. These tools, usually relying on general purpose alignment algorithms, are however characterized by different sensitivity and accuracy levels and in the most of the cases provide not overlapping predictions. To overcome these limitations we propose a novel pipeline for miRNAs detection and quantification in RNA-Seq sample, miRNA Seed Extension Aligner (miR-SEA), based on an experimental evidence concerning miRNAs structure. The proposed pipeline was tested on three Colorectal Cancer (CRC) RNA-Seq samples and the obtained results compared with those provided by two well-known miRNAs detection tools showing good ability in performing detection and quantification more adherent to miRNAs structur

    miR-SEA: miRNA Seed Extension based Aligner Pipeline for NGS Expression Level Extraction

    Get PDF
    The advent of Next Generation Sequencing (NGS) technology has enabled a new major approach for micro RNAs (miRNAs) expression profiling through the so called RNA-Sequencing (RNA-Seq). Different tools have been developed in the last years in order to detect and quantify miRNAs, especially in pathological samples, starting from the big amount of data deriving from RNA sequencing. These tools, usually relying on general purpose alignment algorithms, are however characterized by different sensitivity and accuracy levels and in the most of the cases provide not overlapping predictions. To overcome these limitations we propose a novel pipeline for miRNAs detection and quantification in RNA-Seq sample, miRNA Seed Extension Aligner (miR-SEA), based on an experimental evidence concerning miRNAs structure. The proposed pipeline was tested on three Colorectal Cancer (CRC) RNA-Seq samples and the obtained results compared with those provided by two well-known miRNAs detection tools showing good ability in performing detection and quantification more adherent to miRNAs structure
    • …
    corecore