1,837 research outputs found
Recommended from our members
Notations and conventions in molecular spectroscopy: part 2. Symmetry notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part 2 in a series, establishes the notations and conventions used for the
description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly
with the symmetry operators of the molecular point groups (also drawing attention to the
difference between symmetry operators and elements). The conventions and notations of the
molecular point groups are then established, followed by those of the representations of these
groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with
permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy
and electronic spectroscopy
Recommended from our members
Notations and conventions in molecular spectroscopy: part 1. General spectroscopic notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part I in a series, establishes the notations and conventions used for
general spectroscopic notations and deals with quantum mechanics, quantum numbers
(vibrational states, angular momentum and energy levels), spectroscopic transitions, and
miscellaneous notations (e.g. spectroscopic terms). Further parts will follow, dealing inter
alia with symmetry notation, permutation and permutation-inversion symmetry notation,
vibration-rotation spectroscopy and electronic spectroscopy
A New Galactic 6cm Formaldehyde Maser
We report the detection of a new H2CO maser in the massive star forming
region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy
where H2CO maser emission has been found. The new H2CO maser is located toward
a compact HII region, and is coincident in velocity and position with 6.7 GHz
methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data.
The coincidence with an IR source and 6.7 GHz methanol masers suggests that the
maser is in close proximity to an embedded massive protostar. Thus, the
detection of H2CO maser emission toward G23.71-0.20 supports the trend that
H2CO 6cm masers trace molecular material very near young massive stellar
objects.Comment: Accepted for publication in The Astrophysical Journal Letter
Blackbody-radiation-assisted molecular laser cooling
The translational motion of molecular ions can be effectively cooled
sympathetically to temperatures below 100 mK in ion traps through Coulomb
interactions with laser-cooled atomic ions. The distribution of internal
rovibrational states, however, gets in thermal equilibrium with the typically
much higher temperature of the environment within tens of seconds. We consider
a concept for rotational cooling of such internally hot, but translationally
cold heteronuclear diatomic molecular ions. The scheme relies on a combination
of optical pumping from a few specific rotational levels into a ``dark state''
with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure
Methanol Masers as Tracers of Circumstellar Disks
We show that in many methanol maser sources the masers are located in lines,
with a velocity gradient along them which suggests that the masers are situated
in edge-on circumstellar, or protoplanetary, disks. We present VLBI
observations of the methanol maser source G309.92+0.48, in the 12.2 GHz
transition, which confirm previous observations that the masers in this source
lie along a line. We show that such sources are not only linear in space but,
in many cases, also have a linear velocity gradient. We then model these and
other data in both the 6.7 GHz and the 12.2 GHz transition from a number of
star formation regions, and show that the observed spatial and velocity
distribution of methanol masers, and the derived Keplerian masses, are
consistent with a circumstellar disk rotating around an OB star. We consider
this and other hypotheses, and conclude that about half of these methanol
masers are probably located in edge-on circumstellar disks around young stars.
This is of particular significance for studies of circumstellar disks because
of the detailed velocity information available from the masers.Comment: 38 pages, 13 figures accepted by Ap
On the Identification of High Mass Star Forming Regions using IRAS: Contamination by Low-Mass Protostars
We present the results of a survey of a small sample (14) of low-mass
protostars (L_IR < 10^3 Lsun) for 6.7 GHz methanol maser emission performed
using the ATNF Parkes radio telescope. No new masers were discovered. We find
that the lower luminosity limit for maser emission is near 10^3 Lsun, by
comparison of the sources in our sample with previously detected methanol maser
sources. We examine the IRAS properties of our sample and compare them with
sources previously observed for methanol maser emission, almost all of which
satisfy the Wood & Churchwell criterion for selecting candidate UCHII regions.
We find that about half of our sample satisfy this criterion, and in addition
almost all of this subgroup have integrated fluxes between 25 and 60 microns
that are similar to sources with detectable methanol maser emission. By
identifying a number of low-mass protostars in this work and from the
literature that satisfy the Wood & Churchwell criterion for candidate UCHII
regions, we show conclusively for the first time that the fainter flux end of
their sample is contaminated by lower-mass non-ionizing sources, confirming the
suggestion by van der Walt and Ramesh & Sridharan.Comment: 8 pages with 2 figures. Accepted by Ap
Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602
Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated
self-consistently to understand their spectral energy distributions (SED).
Radiative transfer calculations in spherical geometry involving the dust as
well as the gas component, have been carried out to explain observations
covering a wide spectral range encompassing near-infrared to radio continuum
wavelengths. Various geometric and physical details of the YSOs are determined
from this modelling scheme. In order to assess the effectiveness of this
self-consistent scheme, three young Galactic star forming regions associated
with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test
cases. They cover a large range of luminosity ( 40). The modelling of
their SEDs has led to information about various details of these sources, e.g.
embedded energy source, cloud structure & size, density distribution,
composition & abundance of dust grains etc. In all three cases, the best fit
model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4
figures. To appear in Journal of Astronophysics & Astronom
Integrating omics to characterize eco‐physiological adaptations: How moose diet and metabolism differ across biogeographic zones
1. With accelerated land conversion and global heating at northern latitudes, it becomes crucial to understand, how life histories of animals in extreme environments adapt to these changes. Animals may either adapt by adjusting foraging behavior or through physiological responses, including adjusting their energy metabolism or both. Until now, it has been difficult to study such adaptations in free‐ranging animals due to methodological constraints that prevent extensive spatiotemporal coverage of ecological and physiological data.
2. Through a novel approach of combining DNA‐metabarcoding and nuclear magnetic resonance (NMR)‐based metabolomics, we aim to elucidate the links between diets and metabolism in Scandinavian moose Alces alces over three biogeographic zones using a unique dataset of 265 marked individuals.
3. Based on 17 diet items, we identified four different classes of diet types that match browse species availability in respective ecoregions in northern Sweden. Individuals in the boreal zone consumed predominantly pine and had the least diverse diets, while individuals with highest diet diversity occurred in the coastal areas. Males exhibited lower average diet diversity than females.
4. We identified several molecular markers indicating metabolic constraints linked to diet constraints in terms of food availability during winter. While animals consuming pine had higher lipid, phospocholine, and glycerophosphocholine concentrations in their serum than other diet types, birch‐ and willow/aspen‐rich diets exhibit elevated concentrations of several amino acids. The individuals with highest diet diversity had increased levels of ketone bodies, indicating extensive periods of starvation for these individuals.
5. Our results show how the adaptive capacity of moose at the eco‐physiological level varies over a large eco‐geographic scale and how it responds to land use pressures. In light of extensive ongoing climate and land use changes, these findings pave the way for future scenario building for animal adaptive capacity
Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices
H2O is the most abundant component of astrophysical ices. In most lines of
sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending
and the 13 um libration band intensities with a single pure H2O spectrum.
Recent Spitzer observations have revealed CO2 ice in high abundances and it has
been suggested that CO2 mixed into H2O ice can affect relative strengths of the
3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of
H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral
features at 15-135 K. We find that the H2O peak profiles and band strengths are
significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In
all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um,
which can be used to put an upper limit on the CO2 concentration in the H2O
ice. The H2O bending mode profile also changes drastically with CO2
concentration; the broad pure H2O band gives way to two narrow bands as the CO2
concentration is increased. This makes it crucial to constrain the environment
of H2O ice to enable correct assignments of other species contributing to the
interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of
B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending
regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and
HCOOH.Comment: 12 pages, 11 figures, accepted by A&
- …