161 research outputs found

    Development of personalized thrombogenesis and thrombin generation assays to assess endothelial dysfunction in cardiovascular diseases

    Get PDF
    The study of endothelial dysfunction (ED) is crucial to identify the pathogenetic mechanism(s) and provide indications for patient management in cardiovascular diseases. It is currently hindered by the limited availability of patient-specific primary endothelial cells (ECs). Endothelial colony-forming cells (ECFCs) represent an optimal non-invasive tool to overcome this issue. Therefore, we investigated the use of ECFCs as a substrate in thrombogenesis and thrombin generation assay (TGA) to assess ED. Both assays were set up on human umbilical vein endothelial cells (HUVECs) and then tested on ECFCs obtained from healthy donors. To prove the ability of the assays to detect endothelial activation, ECs stimulated with TNFα were compared with unstimulated ECs. EC activation was confirmed by the upregulation of VCAM-1 and Tissue Factor expression. Both assays discriminated between unstimulated and activated HUVECs and ECFCs, as significantly higher platelet deposition and fibrin formation in thrombogenesis assay, and thrombin generation in TGA, were observed when TNFα-activated ECs were used as a substrate. The amount of fibrin and thrombin measured in the two assays were directly correlated. Our results support the combined use of a thrombogenesis assay and TGA performed on patient-derived ECFCs to provide a personalized global assessment of ED relevant to the patient’s hemostatic profile

    5-fluorouracil modulated by leucovorin, methotrexate and mitomycin: highly effective, low-cost chemotherapy for advanced colorectal cancer

    Get PDF
    We have reported that an alternating regimen of bolus and continuous infusion 5-fluorouracil (FU) was superior to bolus FU in terms of response rate and progression-free survival in advanced colorectal cancer. Biochemical modulation was an essential part of this regimen and it was selective for the schedule of FU administration: bolus FU was in fact modulated by methotrexate (MTX) while continuous infusion FU was potentiated by 6-s-leucovorin (LV). Considering the low cost and the favourable report on the activity of mitomycin C (mito) added to CI FU, we have incorporated this agent in the infusional part of our treatment programme. 105 patients with untreated, advanced, measurable colorectal cancer were accrued from 13 Italian centres and treated with the following regimen. 2 biweekly cycles of FU bolus (600 mg/m2), modulated by MTX (24 h earlier, 200 mg/m2) were alternated with a 3-week continuous infusion of FU (200 mg/m2daily), modulated by LV (20 mg/m2weekly bolus). Mito, 7 mg/m2, was given on the first day of the infusional period. After a 1 week rest, the whole cycle (8 weeks) was repeated, if indicated. 5 complete and 34 partial responses were obtained (response rate, 37% on the intention to treat basis; 95% confidence limits, 28–46%). After a median follow-up time of 26 months, 37 patients are still alive. The median progression-free survival is 7.7 months with an overall survival of 18.8 months and a 2-year survival rate of 30%. The regimen was very well tolerated with fewer than 13% of patients experiencing WHO grade III–IV toxicity. These results are consistent with those obtained by our group in 3 previous trials of schedule specific biochemical modulation of FU. They also indicate a highly active, little toxic, inexpensive regimen of old drugs to be used (a) as an alternative to the more expensive combinations including CPT-11 or oxaliplatin or (b) as the basis for combination programmes with these agents. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry

    Get PDF
    The present study is the first of a series of three papers where we characterise the type II supernovae (SNe~II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe~II. We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriYJHuBgVriYJH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than rr that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN~II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN~II colours. Using our 74 SN~II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves.Comment: Accepted for publication in A&

    Type II supernovae from the Carnegie Supernova Project-I. II. Physical parameter distributions from hydrodynamical modelling

    Get PDF
    Linking supernovae to their progenitors is a powerful method for furthering our understanding of the physical origin of their observed differences, while at the same time testing stellar evolution theory. In this second study of a series of three papers where we characterise SNe II to understand their diversity, we derive progenitor properties (initial and ejecta masses, and radius), explosion energy, 56^{56}Ni mass, and its degree of mixing within the ejecta for a large sample of SNe II. This dataset was obtained by the Carnegie Supernova Project-I and is characterised by a high cadence of their optical and NIR light curves and optical spectra that were homogeneously observed and processed. A large grid of hydrodynamical models and a fitting procedure based on MCMC methods were used to fit the bolometric light curve and the evolution of the photospheric velocity of 53 SNe II. We infer ejecta masses between 7.9 and 14.8 M⊙M_{\odot}, explosion energies between 0.15 and 1.40 foe, and 56^{56}Ni masses between 0.006 and 0.069 M⊙M_{\odot}. We define a subset of 24~SNe (the `gold sample') with well-sampled bolometric light curves and expansion velocities for which we consider the results more robust. Most SNe~II in the gold sample (∼\sim88%) are found with ejecta masses in the range of ∼\sim8-10 M⊙M_{\odot}, coming from low zero-age main-sequence masses (9-12 M⊙M_{\odot}). The modelling of the initial-mass distribution of the gold sample gives an upper mass limit of 21.3−0.4+3.8^{+3.8}_{-0.4} M⊙M_{\odot} and a much steeper distribution than that for a Salpeter massive-star IMF. This IMF incompatibility is due to the large number of low-mass progenitors found -- when assuming standard stellar evolution. This may imply that high-mass progenitors lose more mass during their lives than predicted. However, a deeper analysis of all stellar evolution assumptions is required to test this hypothesis.Comment: Accepted for publication in Astronomy & Astrophysic

    Raltitrexed plus oxaliplatin (TOMOX) as first-line chemotherapy for metastatic colorectal cancer. A phase ii study of the italian group for the study of gastrointestinal tract carcinomas (GISCAD)

    Get PDF
    Background: To evaluate the safety and efficacy of the novel raltitrexed/oxaliplatin combination (TOMOX) as first-line chemotherapy for patients with advanced colorectal cancer. Materials and methods: Previously untreated patients with metastatic colorectal cancer received raltitrexed 3 mg/m2 plus oxaliplatin 100 mg/m2, both intravenously, on day 1 every 3 weeks. Patients were re-evaluated after every third cycle and chemotherapy was continued up to tolerance or disease progression. Results: Fifty-eight patients from 13 Italian Group for the Study of Gastrointestinal Tract Carcinomas (GISCAD) centers were accrued from September 1999 to November 2000. According to the intention-to-treat analysis from 58 patients, the overall response rate was 50% [95% confidence interval (CI) 38% to 62%], with three complete responses and 26 partial responses. The median overall survival (44 patients currently alive) was >9 months and the median time to disease progression was 6.5 months (range 1-15 months). The main hematological toxicity was grade III/IV neutropenia, which occurred in 17% of patients, while anemia and thrombocytopenia were uncommon. Grade III/IV non-hematological toxicities were transient transaminitis (17% of patients); asthenia (16% of patients); neurotoxicity (10% of patients) and diarrhea (7% of patients). No toxic death was observed, one patient with grade IV asthenia after the first cycle refused chemotherapy. Conclusions: The results of this study suggest that the TOMOX combination is an effective and well tolerated regimen for the treatment of advanced colorectal cancer. Its ease of administration and patient tolerance warrant further investigation as an alternative to fluoropyrimidine-based regimens with repeated and prolonged fluorouracil infusions

    Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry

    Get PDF
    The present study is the first of a series of three papers where we characterise the type II supernovae (SNe~II) from the Carnegie Supernova Project-I to understand their diversity in terms of progenitor and explosion properties. In this first paper, we present bolometric light curves of 74 SNe~II. We outline our methodology to calculate the bolometric luminosity, which consists of the integration of the observed fluxes in numerous photometric bands (uBgVriYJHuBgVriYJH) and black-body (BB) extrapolations to account for the unobserved flux at shorter and longer wavelengths. BB fits were performed using all available broadband data except when line blanketing effects appeared. Photometric bands bluer than rr that are affected by line blanketing were removed from the fit, which makes near-infrared (NIR) observations highly important to estimate reliable BB extrapolations to the infrared. BB fits without NIR data produce notably different bolometric light curves, and therefore different estimates of SN~II progenitor and explosion properties when data are modelled. We present two methods to address the absence of NIR observations: (a) colour-colour relationships from which NIR magnitudes can be estimated using optical colours, and (b) new prescriptions for bolometric corrections as a function of observed SN~II colours. Using our 74 SN~II bolometric light curves, we provide a full characterisation of their properties based on several observed parameters. We measured magnitudes at different epochs, as well as durations and decline rates of different phases of the evolution. An analysis of the light-curve parameter distributions was performed, finding a wide range and a continuous sequence of observed parameters which is consistent with previous analyses using optical light curves...

    Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    Get PDF
    This work was supported by Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Ministerio de Economía y Competitividad (CTQ2013-44367-C2-2-P to R.H.-G.) and Diputación General de Aragón (DGA; B89 to R.H.-G.) and the EU Seventh Framework Programme (2007–2013) under BioStruct-X (grant agreement 283570 and BIOSTRUCTX 5186, to R.H.-G.). T.K.S. was supported by the Wellcome Trust grant 093228 and European Community’s Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED).Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase.Publisher PDFPeer reviewe

    A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties

    Get PDF
    The analysis of core-collapse supernova (CCSN) environments can provide important information on the life cycle of massive stars and constrain the progenitor properties of these powerful explosions. The MUSE instrument at the Very Large Telescope (VLT) enables detailed local environment constraints of the progenitors of large samples of CCSNe. Using a homogeneous SN sample from the All-Sky Automated Survey for Supernovae (ASAS-SN) survey, an untargeted and spectroscopically complete transient survey, has enabled us to perform a minimally biased statistical analysis of CCSN environments. Aims. We analyze 111 galaxies observed by MUSE that hosted 112 CCSNe-78 II, nine IIn, seven IIb, four Ic, seven Ib, three Ibn, two Ic-BL, one ambiguous Ibc, and one superluminous SN-detected or discovered by the ASAS-SN survey between 2014 and 2018. The majority of the galaxies were observed by the All-weather MUse Supernova Integral field Nearby Galaxies (AMUSING) survey. Here we analyze the immediate environment around the SN locations and compare the properties between the different CCSN types and their light curves. Methods. We used stellar population synthesis and spectral fitting techniques to derive physical parameters for all H ¯II regions detected within each galaxy, including the star formation rate (SFR), Hα equivalent width (EW), oxygen abundance, and extinction. Results. We found that stripped-envelope supernovae (SESNe) occur in environments with a higher median SFR, Hα EW, and oxygen abundances than SNe II and SNe IIn/Ibn. Most of the distributions have no statistically significant differences, except between oxygen abundance distributions of SESNe and SNe II, and between Hα EW distributions of SESNe and SNe II. The distributions of SNe II and IIn are very similar, indicating that these events explode in similar environments. For the SESNe, SNe Ic have higher median SFRs, Hα EWs, and oxygen abundances than SNe Ib. SNe IIb have environments with similar SFRs and Hα EWs to SNe Ib, and similar oxygen abundances to SNe Ic. We also show that the postmaximum decline rate, s, of SNe II correlates with the Hα EW, and that the luminosity and the Δ m15 parameter of SESNe correlate with the oxygen abundance, Hα EW, and SFR at their environments. This suggests a connection between the explosion mechanisms of these events to their environment properties

    AT2022aedm and a new class of luminous, fast-cooling transients in elliptical galaxies

    Full text link
    We present the discovery and extensive follow-up of a remarkable fast-evolving optical transient, AT2022aedm, detected by the Asteroid Terrestrial impact Last Alert Survey (ATLAS). AT2022aedm exhibited a rise time of 9±19\pm1 days in the ATLAS oo-band, reaching a luminous peak with Mg≈−22M_g\approx-22 mag. It faded by 2 magnitudes in gg-band during the next 15 days. These timescales are consistent with other rapidly evolving transients, though the luminosity is extreme. Most surprisingly, the host galaxy is a massive elliptical with negligible current star formation. X-ray and radio observations rule out a relativistic AT2018cow-like explosion. A spectrum in the first few days after explosion showed short-lived He II emission resembling young core-collapse supernovae, but obvious broad supernova features never developed; later spectra showed only a fast-cooling continuum and narrow, blue-shifted absorption lines, possibly arising in a wind with v≈2700v\approx2700 km s−1^{-1}. We identify two further transients in the literature (Dougie in particular, as well as AT2020bot) that share similarities in their luminosities, timescales, colour evolution and largely featureless spectra, and propose that these may constitute a new class of transients: luminous fast-coolers (LFCs). All three events occurred in passive galaxies at offsets of ∼4−10\sim4-10 kpc from the nucleus, posing a challenge for progenitor models involving massive stars or massive black holes. The light curves and spectra appear to be consistent with shock breakout emission, though usually this mechanism is associated with core-collapse supernovae. The encounter of a star with a stellar mass black hole may provide a promising alternative explanation.Comment: Accepted in ApJ
    • …
    corecore