45 research outputs found

    Adaptation and conservation insights from the koala genome

    Get PDF
    The koala, the only extant species of the marsupial family Phascolarctidae, is classified as ‘vulnerable’ due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala’s ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala’s survival in the wild

    Low level of extrapair parentage in wild zebra finches

    Full text link
    The captive zebra finch, Taeniopygia guttata, has become one of the key vertebrate model systems for studying a range of behavioural, physiological and neurological phenomena. In particular, this species has played a key role in developing our understanding of sexual selection and sperm competition. In contrast with the large number of studies using domesticated zebra finches, relatively few studies have focused on free-living populations of wild zebra finches. Investigating the incidence of extrapair paternity in zebra finches in the Australian desert, we found a very low level; 1.7% of 316 offspring from four of 80 broods fathered outside the pair bond. These numbers contrast with the high levels of extrapair paternity observed in domesticated aviary populations, and suggest a low level of sperm competition and sexual selection in natural populations. Our finding of such a low rate of extrapair paternity in the wild zebra finch suggests that it is one of the most genetically monogamous of all passerine species and that has important implications for future studies of this model organism in studies of sexual selection and reproductive biology. In addition, we found that 5.4% of 316 offspring were not related to either putative parent and hatched from eggs that had been dumped by intraspecific brood parasites

    Data from: Building genetic networks using relatedness information: a novel approach for the estimation of dispersal and characterization of group structure in social animals

    No full text
    Natal dispersal is an important life history trait driving variation in individual fitness and, therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively-studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. Not only does this novel approach identify movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female-biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark-recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group while male genetic structure expands for 750 meters from their social group. Although the genetic network approach we have used is an excellent tool for visualising the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data

    Data from: Building genetic networks using relatedness information: a novel approach for the estimation of dispersal and characterization of group structure in social animals

    No full text
    Natal dispersal is an important life history trait driving variation in individual fitness and, therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively-studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. Not only does this novel approach identify movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female-biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark-recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group while male genetic structure expands for 750 meters from their social group. Although the genetic network approach we have used is an excellent tool for visualising the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data

    Population_allele_frequencies

    No full text
    Allele frequency file used to generate relatedness values in conjunction with associated genotype fil

    Sex reversal triggers the rapid transition from genetic to temperature-dependent sex

    No full text
    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change. © 2015 Macmillan Publishers Limited. All rights reserved

    Sperm competition drives the evolution of suicidal reproduction in mammals

    No full text
    Suicidal reproduction (semelparity) has evolved in only four genera of mammals. In these insectivorous marsupials, all males die after mating, when failure of the corticosteroid feedback mechanism elevates stress hormone levels during the mating season and causes lethal immune system collapse (die-off). We quantitatively test and resolve the evolutionary causes of this surprising and extreme life history strategy. We show that as marsupial predators in Australia, South America, and Papua New Guinea diversified into higher latitudes, seasonal predictability in abundance of their arthropod prey increased in multiple habitats. More-predictable prey peaks were associated with shorter annual breeding seasons, consistent with the suggestion that females accrue fitness benefits by timing peak energy demands of reproduction to coincide with maximum food abundance. We demonstrate that short mating seasons intensified reproductive competition between males, increasing male energy investment in copulations and reducing male postmating survival. However, predictability of annual prey cycles alone does not explain suicidal reproduction, because unlike insect abundance, peak ovulation dates in semelparous species are often synchronized to the day among years, triggered by a species-specific rate of change of photoperiod. Among species with low postmating male survival, we show that those with suicidal reproduction have shorter mating seasons and larger testes relative to body size. This indicates that lethal effort is adaptive in males because females escalate sperm competition by further shortening and synchronizing the annual mating period and mating promiscuously. We conclude that precopulatory sexual selection by females favored the evolution of suicidal reproduction in mammals
    corecore