3,632 research outputs found

    The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution

    Get PDF
    The stability properties of one-dimensional radiative shocks with a power-law cooling function of the form Λ∝ρ2Tα\Lambda \propto \rho^2T^\alpha are the main subject of this work. The linear analysis originally presented by Chevalier & Imamura, is thoroughfully reviewed for several values of the cooling index α\alpha and higher overtone modes. Consistently with previous results, it is shown that the spectrum of the linear operator consists in a series of modes with increasing oscillation frequency. For each mode a critical value of the cooling index, αc\alpha_\textrm{c}, can be defined so that modes with α<αc\alpha < \alpha_\textrm{c} are unstable, while modes with α>αc\alpha > \alpha_\textrm{c} are stable. The perturbative analysis is complemented by several numerical simulations to follow the time-dependent evolution of the system for different values of α\alpha. Particular attention is given to the comparison between numerical and analytical results (during the early phases of the evolution) and to the role played by different boundary conditions. It is shown that an appropriate treatment of the lower boundary yields results that closely follow the predicted linear behavior. During the nonlinear regime, the shock oscillations saturate at a finite amplitude and tend to a quasi-periodic cycle. The modes of oscillations during this phase do not necessarily coincide with those predicted by linear theory, but may be accounted for by mode-mode coupling.Comment: 33 pages, 12 figures, accepted for publication on the Astrophysical Journa

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    PIC simulations of stable surface waves on a subcritical fast magnetosonic shock front

    Full text link
    We study with particle-in-cell (PIC) simulations the stability of fast magnetosonic shocks. They expand across a collisionless plasma and an orthogonal magnetic field that is aligned with one of the directions resolved by the 2D simulations. The shock speed is 1.6 times the fast magnetosonic speed when it enters a layer with a reduced density of mobile ions, which decreases the shock speed by up to 15\% in 1D simulations. In the 2D simulations, the density of mobile ions in the layer varies sinusoidally perpendicularly to the shock normal. We resolve one sine period. This variation only leads to small changes in the shock speed evidencing a restoring force that opposes a shock deformation. As the shock propagates through the layer, the ion density becomes increasingly spatially modulated along the shock front and the magnetic field bulges out where the mobile ion density is lowest. The perturbed shock eventually reaches a steady state. Once it leaves the layer, the perturbations of the ion density and magnetic field oscillate along its front at a frequency close to the lower-hybrid frequency; the shock is mediated by a standing wave composed of obliquely propagating lower-hybrid waves. We perform three 2D simulations with different box lengths along the shock front. The shock front oscillations are aperiodically damped in the smallest box with the fastest variation of the ion density, strongly damped in the intermediate one, and weakly damped in the largest box. The shock front oscillations perturb the magnetic field in a spatial interval that extends by several electron skin depths upstream and downstream of the shock front and could give rise to Whistler waves that propagate along the shock's magnetic field overshoot. Similar waves were observed in hybrid and PIC simulations and by the MMS satellite mission.Comment: 25 pages, 12 figures, accepted for publication in Physica Script

    Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae

    Full text link
    Using the 2D multi-group, flux-limited diffusion version of the code VULCAN/2D, that also incorporates rotation, we have calculated the collapse, bounce, shock formation, and early post-bounce evolutionary phases of a core-collapse supernova for a variety of initial rotation rates. This is the first series of such multi-group calculations undertaken in supernova theory with fully multi-D tools. We find that though rotation generates pole-to-equator angular anisotropies in the neutrino radiation fields, the magnitude of the asymmetries is not as large as previously estimated. Moreover, we find that the radiation field is always more spherically symmetric than the matter distribution, with its plumes and convective eddies. We present the dependence of the angular anisotropy of the neutrino fields on neutrino species, neutrino energy, and initial rotation rate. Only for our most rapidly rotating model do we start to see qualitatively different hydrodynamics, but for the lower rates consistent with the pre-collapse rotational profiles derived in the literature the anisotropies, though interesting, are modest. This does not mean that rotation does not play a key role in supernova dynamics. The decrease in the effective gravity due to the centripetal effect can be quite important. Rather, it means that when a realistic mapping between initial and final rotational profiles and 2D multi-group radiation-hydrodynamics are incorporated into collapse simulations the anisotropy of the radiation fields may be only a secondary, not a pivotal factor, in the supernova mechanism.Comment: Includes 11 low-resolution color figures, accepted to the Astrophysical Journal (June 10, 2005; V. 626); high-resolution figures and movies available from the authors upon reques

    Evolution and Nucleosynthesis of Very Massive Stars

    Full text link
    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M>100 solar masses) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 solar masses. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 solar masses (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable star to undergo pair-instability supernovae.Comment: 42 pages, 20 figures, Book Chapter in "Very Massive Stars in the Local Universe", Springer, Ed. Jorick S. Vin

    Fingerprinting of chlorinated paraffins and their transformation products in plastic consumer products

    Full text link
    Chlorinated paraffins (CPs) can be classified according to their length as short-chain (SC, C10-C13), medium-chain (MC, C14-C17) and long-chain (LC, C ≄ 18) CPs. Technical CP-mixtures can contain a wide range of carbon- (C-, nC = 10-30) and chlorine- (Cl-, nCl = 3-19) homologues. CPs are high-production volume chemicals (>106 t/y). They are used as flame-retardants, plasticizers and coolant fluids. Due to the persistence, bioaccumulation, long-range environmental transport potential and adverse effects, SCCPs are regulated as persistent organic pollutants (POPs) by the Stockholm Convention. Transformation of CPs can lead to the formation of unsaturated compounds such as chlorinated mono- (CO), di- (CdiO) and tri-olefins (CtriO). Such transformation reactions can occur at different stages of CP manipulation providing characteristic C-/Cl-homologue distributions. All this results in unique patterns that collectively create a fingerprint, which can be distinguished from CP-containing samples. Therefore, CP-fingerprinting can develop into a promising tool for future source apportionment studies and with it, the reduction of environmental burden of CPs and hazards to humans. Herein, CP-containing plastics were studied to establish fingerprints and develop this method. We analyzed four household items by reverse-phase liquid-chromatography coupled with a mass spectrometer with an atmospheric pressure chemical ionization source and an Orbitrap mass analyzer (RP-LC-APCI-Orbitrap-MS) operated at a resolution of 120000 (FWHM at m/z 200). MS-data of different CP-, CO-, CdiO- and CtriO-homologues were efficiently processed with an R-based automatic mass spectra evaluation routine (RASER). From the 16720 ions searched for, up to 4300 ions per sample were assigned to 340 C-/Cl-homologues of CPs and their transformation products. Specific fingerprints were deduced from the C-/Cl-homologues distributions, the carbon- (nC) and chlorine- (nCl) numbers and saturation degree. These fingerprints were compared with the ones obtained by a GC-ECNI-Orbitrap-MS method

    Connecting RS OPh to [some] Type Ia Supernovae

    Full text link
    Aims: Recurrent nova systems like RS Oph have been proposed as a possible channel to Type Ia Supernova explosions, based on the high mass of the accreting white dwarf. Additional support to this hypothesis has been recently provided by the detection of circumstellar material around SN2006X and SN2007le, showing a structure compatible with that expected for recurrent nova outbursts.In this paper we investigate the circumstellar environment of RS Oph and its structure, with the aim of establishing a firmer and independent link between this class of objects and Type Ia SN progenitors. Methods: We study the time evolution of CaII, NaI and KI absorption features in RS Oph, before, during, and after the last outburst, using multi-epoch, high-resolution spectroscopy, and applying the same method adopted for SN2006X and SN2007le. Results: A number of components, blue-shifted with respect to the systemic velocity of RS Oph, are detected. In particular, one feature strongly weakens in the first two weeks after the outburst, simultaneously with the disappearance of very narrow P-Cyg profiles overimposed on the much wider nova emission lines of H, He, FeII and other elements. Conclusions: We interpret these facts as the signature of density enhancements in the circumstellar material, suggesting that the recurrent eruptions might indeed create complex structures within the material lost by the donor star. This establishes a strong link between RS Oph and the progenitor system of the Type Ia SN2006X, for which similar features have been detected.Comment: 8 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Neutrino signatures and the neutrino-driven wind in Binary Neutron Star Mergers

    Full text link
    We present VULCAN/2D multi-group flux-limited-diffusion radiation hydrodynamics simulations of binary neutron star (BNS) mergers, using the Shen equation of state, covering ~100 ms, and starting from azimuthal-averaged 2D slices obtained from 3D SPH simulations of Rosswog & Price for 1.4 Msun (baryonic) neutron stars with no initial spins, co-rotating spins, and counter-rotating spins. Snapshots are post-processed at 10 ms intervals with a multi-angle neutrino-transport solver. We find polar-enhanced neutrino luminosities, dominated by Μˉe\bar{\nu}_e and ``ΜΌ\nu_\mu'' neutrinos at peak, although Îœe\nu_e emission may be stronger at late times. We obtain typical peak neutrino energies for Îœe\nu_e, Μˉe\bar{\nu}_e, and ``ΜΌ\nu_\mu'' of ~12, ~16, and ~22 MeV. The super-massive neutron star (SMNS) formed from the merger has a cooling timescale of ~1 s. Charge-current neutrino reactions lead to the formation of a thermally-driven bipolar wind with ~10−3^{-3} Msun/s, baryon-loading the polar regions, and preventing any production of a GRB prior to black-hole formation. The large budget of rotational free energy suggests magneto-rotational effects could produce a much greater polar mass loss. We estimate that ~10−4^{-4} Msun of material with electron fraction in the range 0.1-0.2 become unbound during this SMNS phase as a result of neutrino heating. We present a new formalism to compute the ÎœiΜˉi\nu_i\bar{\nu}_i annihilation rate based on moments of the neutrino specific intensity computed with our multi-angle solver. Cumulative annihilation rates, which decay as t−1.8t^{-1.8}, decrease over our 100 ms window from a few 1050^{50} to ~1049^{49} erg/s, equivalent to a few 1054^{54} to ~1053^{53} e−e+e^-e^+ pairs per second.Comment: 23 pages, 20 figures, 2 tables, submitted to ApJ, high resolution version of the paper available at http://hermes.as.arizona.edu/~luc/ms.pd

    PIC simulations of stable surface waves on a subcritical fast magnetosonic shock front

    Get PDF
    We study with particle-in-cell (PIC) simulations the stability of fast magnetosonic shocks. They expand across a collisionless plasma and an orthogonal magnetic field that is aligned with one of the directions resolved by the 2D simulations. The shock speed is 1.6 times the fast magnetosonic speed when it enters a layer with a reduced density of mobile ions, which decreases the shock speed by up to 15\% in 1D simulations. In the 2D simulations, the density of mobile ions in the layer varies sinusoidally perpendicularly to the shock normal. We resolve one sine period. This variation only leads to small changes in the shock speed evidencing a restoring force that opposes a shock deformation. As the shock propagates through the layer, the ion density becomes increasingly spatially modulated along the shock front and the magnetic field bulges out where the mobile ion density is lowest. The perturbed shock eventually reaches a steady state. Once it leaves the layer, the perturbations of the ion density and magnetic field oscillate along its front at a frequency close to the lower-hybrid frequency; the shock is mediated by a standing wave composed of obliquely propagating lower-hybrid waves. We perform three 2D simulations with different box lengths along the shock front. The shock front oscillations are aperiodically damped in the smallest box with the fastest variation of the ion density, strongly damped in the intermediate one, and weakly damped in the largest box. The shock front oscillations perturb the magnetic field in a spatial interval that extends by several electron skin depths upstream and downstream of the shock front and could give rise to Whistler waves that propagate along the shock's magnetic field overshoot. Similar waves were observed in hybrid and PIC simulations and by the MMS satellite mission

    Photoevaporating flows from the cometary knots in the Helix nebula (NGC 7293)

    Get PDF
    We explain the Ha emission of the cometary knots in the Helix Nebula (NGC 7293) with an analytical model that describes the emission of the head of the globules as a photoevaporated flow produced by the incident ionizing radiation of the central star.We compare these models with the Ha emission obtained from the HST archival images of the Helix Nebula. From a comparison of the Ha emission with the predictions of the analytical model we obtain a rate of ionizing photons from the central star of about 5e45 s^-1, which is consistent with estimates based on the total Hb flux of the nebula. We also model the tails of the cometary knots as a photoevaporated wind from a neutral shadow region produced by the diffuse ionizing photon field of the nebula. A comparison with the HST images allows us to obtain a direct determination of the value of the diffuse ionizing flux. We compare the ratio of diffuse to direct stellar flux as a function of radius inside an HII region with those obtained from the observational data through the analytical tail and head wind model. The agreement of this model with the values determined from the observations of the knots is excellent.Comment: 9 pages, 5 figures, accepted for publication in Ap
    • 

    corecore