451 research outputs found
Inviscid coalescence of drops
We study the coalescence of two drops of an ideal fluid driven by surface
tension. The velocity of approach is taken to be zero and the dynamical effect
of the outer fluid (usually air) is neglected. Our approximation is expected to
be valid on scales larger than , which is for water. Using a high-precision boundary integral method, we show that
the walls of the thin retracting sheet of air between the drops reconnect in
finite time to form a toroidal enclosure. After the initial reconnection,
retraction starts again, leading to a rapid sequence of enclosures. Averaging
over the discrete events, we find the minimum radius of the liquid bridge
connecting the two drops to scale like
Mechanical Tuning of Thermal Transport in a Molecular Junction
Understanding and controlling heat transport in molecular junctions would
provide new routes to design nanoscale coupled electronic and phononic devices.
Using first principles full quantum calculations, we tune thermal conductance
of a molecular junction by mechanically compressing and extending a short
alkane chain connected to graphene leads. We find that the thermal conductance
of the compressed junction drops by half in comparison to the extended
junction, making it possible to turn on and off the heat current. The low
conductance of the off state does not vary by further approaching the leads and
stems from the suppression of the transmission of the in--plane transverse and
longitudinal channels. Furthermore, we show that misalignment of the leads does
not reduce the conductance ratio. These results also contribute to the general
understanding of thermal transport in molecular junctions.Comment: 12 pages, 6 figure
Exploring approximations to the GW self-energy ionic gradients
The accuracy of the many-body perturbation theory GW formalism to calculate
electron-phonon coupling matrix elements has been recently demonstrated in the
case of a few important systems. However, the related computational costs are
high and thus represent strong limitations to its widespread application. In
the present study, we explore two less demanding alternatives for the
calculation of electron-phonon coupling matrix elements on the many-body
perturbation theory level. Namely, we test the accuracy of the static
Coulomb-hole plus screened-exchange (COHSEX) approximation and further of the
constant screening approach, where variations of the screened Coulomb potential
W upon small changes of the atomic positions along the vibrational eigenmodes
are neglected. We find this latter approximation to be the most reliable,
whereas the static COHSEX ansatz leads to substantial errors. Our conclusions
are validated in a few paradigmatic cases: diamond, graphene and the C60
fullerene. These findings open the way for combining the present many-body
perturbation approach with efficient linear-response theories
Living small-sized (63-150 µm) foraminifera from mid-shelf to mid-slope environments in the Bay of Bisca
Live (rose Bengal stained) foraminiferal faunas of the 63–150 μm size fraction have been investigated in surficial sediment (0–1 cm) from mid-shelf to mid-slope environments in the Bay of Biscay. Eleven stations were sampled in April 2002 and March 2004 between 80 and 2000 m water depth (mwd). Earlier studies on the temporal variability of phytoplankton primary production suggest that our stations were sampled at the most eutrophic period of the year. In response to the decrease of exported organic matter flux to the seafloor along our bathymetric transect, foraminiferal standing stocks decrease from ~1400–2000 specimens per 50 cm3 on the continental shelf (100–140 mwd) and upper slope (550 mwd) to about 400 specimens per 50 cm3 at mid-slope stations (2000 mwd). At all stations, the faunas contain an important amount of small opportunistic species that are favored by seasonal phytodetritus input. On the continental shelf where phytoplankton bloom, events may be geographically restricted; the foraminiferal response is dependent on the distance to the surface-water primary-production cells. Textularia porrecta is very abundant at an 80-m-deep station that is close to the coast and characterized by a high sedimentation rate of fine-grained particles. Foraminiferal faunas are dominated by Nonionella iridea, Cassidulina carinata and Bolivina ex. gr. dilatata at the outer-shelf stations (110–140 mwd) that are under the direct influence of spring bloom phytodetritus input in the northern Bay of Biscay. A fauna dominated by Bolivina dilatata/spathulata and Bolivina subaenariensis is found in the southeastern Bay of Biscay at a 140-m-deep outer-shelf station located seaward of the Adour River estuary, where the sediment is probably enriched in terrestrial organic matter. Apparently, differences in foraminiferal composition between outer-shelf areas in the northern and southeastern Bay of Biscay are related to differences in organic matter quality. On the continental slope, a bathymetric zonation of taxa is observed from upper-slope sites (550–1000 mwd) rich in Epistominella exigua and Uvigerina peregrina to mid-slope stations (1600–2000 mwd), where Nuttallides pusillus and Gavelinopsis translucens dominate the small-sized living fauna. This bathymetric foraminiferal zonation probably reflects a trophic gradient between upper-slope eutrophic stations and mid-slope, more oligotrophic sites. Our zonal description of small-sized living foraminifera (63–150 μm) is new for the Bay of Biscay and may provide the basis to reconstruct former export production regimes in marginal paleo-environments from temperate latitude areas
Production of Medical Isotopes From a Thorium Target Irradiated by Light Charged Particles up to 70 MeV
International audienc
Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations
Insecticide resistance in Anopheles mosquitoes is seriously threatening the success of insecticide-based malaria vector control. Surveillance of insecticide resistance in mosquito populations and identifying the underlying mechanisms enables optimisation of vector control strategies. Here, we investigated the molecular mechanisms of insecticide resistance in three Anopheles coluzzii field populations from southern Cote d'Ivoire, including Agboville, Dabou and Tiassale. All three populations were resistant to bendiocarb, deltamethrin and DDT, but not or only very weakly resistant to malathion. The absence of malathion resistance is an unexpected result because we found the acetylcholinesterase mutation Ace1-G280S at high frequencies, which would typically confer cross-resistance to carbamates and organophosphates, including malathion. Notably, Tiassale was the most susceptible population to malathion while being the most resistant one to the pyrethroid deltamethrin. The resistance ratio to deltamethrin between Tiassale and the laboratory reference colony was 1,800 fold. By sequencing the transcriptome of individual mosquitoes, we found numerous cytochrome P450-dependent monooxygenases - including CYP6M2, CYP6P2, CYP6P3, CYP6P4 and CYP6P5 - overexpressed in all three field populations. This could be an indication for negative cross-resistance caused by overexpression of pyrethroid-detoxifying cytochrome P450s that may activate pro-insecticides, thereby increasing malathion susceptibility. In addition to the P450s, we found several overexpressed carboxylesterases, glutathione S-transferases and other candidates putatively involved in insecticide resistance
On the Role of Charge Transfer Excitations in Non-Fullerene Acceptors for Organic Photovoltaics
Through the development of new non-fullerene electron acceptor (NFA)
materials, such as Y6 and its molecular derivatives, the power conversion
efficiencies of organic photovoltaics (OPVs) have now exceeded 19%. However,
despite this rapid progress, our fundamental understanding of the unique
optical and electronic properties of these Y-series NFAs is lacking, and this
currently limits progress in material design. In this work, we provide a
detailed computational-experimental characterisation of the archetypal NFA, Y6.
To explain the significant broadening and red shift of the absorption spectrum
observed when moving from the solution phase to the solid state, we first rule
out more typical causes, such as J-aggregation. Instead, by considering the
role of charge transfer (CT) excitations and their mixing with Frenkel exciton
(FE) states, we can computationally reproduce the experimental absorption
spectra of Y6 with excellent accuracy. Using transient absorption spectroscopy,
we provide evidence for this dense manifold of FE-CT hybrid electronic
excitations in Y6 through the prominent sub-picosecond relaxation events
following supra band gap excitation. Furthermore, through sub band gap
excitation, we also find states with polaronic character in Y6 that are in a
dynamic equilibrium with the FE-CT hybrid states. Magnetic resonance
spectroscopies reveal that these polaronic states are polaron pairs, most
likely located on neighbouring Y6 molecules, not free charge carriers, as has
been previously suggested. Thus, this new understanding of how the solid-state
packing motif directly controls the optical and electronic properties of
Y-series NFAs opens the door to intelligently design NFA materials to further
increase OPV performance.Comment: 31 pages, 7 figure
Mosquito Abundance, Bed net Coverage and Other Factors Associated with Variations in Sporozoite Infectivity Rates in Four Villages of Rural Tanzania.
Entomological surveys are of great importance in decision-making processes regarding malaria control strategies because they help to identify associations between vector abundance both species-specific ecology and disease intervention factors associated with malaria transmission. Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch methods. In each village, ten paired houses were selected for mosquitoes sampling. Sampling was done in fortnight case and study was undertaken for six months in both Kilimanjaro (Northern Tanzania) and Dodoma (Central Tanzania) regions. A total of 6,883 mosquitoes were collected including: 5,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P < 0.001) and there was a significant difference in sporozoite rates between households with and without bed nets in these four villages (P < 0.001). Malaria remains a major problem in the study areas characterized as low transmission sites. Further studies are required to establish the annual entomological inoculation rates and to observe the annual parasitaemia dynamics in these communities. Outdoor mosquitoes collection should also be considered
- …