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C. Faber1,2,3, P. Boulanger1,2, C. Attaccalite1,2, E. Cannuccia4,5, I. Duchemin2,3, T. Deutsch2,3, X. Blase1,2
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The accuracy of the many-body perturbation theory GW formalism to calculate electron-phonon
coupling matrix elements has been recently demonstrated in the case of a few important systems.
However, the related computational costs are high and thus represent strong limitations to its
widespread application. In the present study, we explore two less demanding alternatives for the
calculation of electron-phonon coupling matrix elements on the many-body perturbation theory
level. Namely, we test the accuracy of the static Coulomb-hole plus screened-exchange (COHSEX)
approximation and further of the constant screening approach, where variations of the screened
Coulomb potential W upon small changes of the atomic positions along the vibrational eigenmodes
are neglected. We find this latter approximation to be the most reliable, whereas the static COHSEX
ansatz leads to substantial errors. Our conclusions are validated in a few paradigmatic cases:
diamond, graphene and the C60 fullerene. These findings open the way for combining the present
many-body perturbation approach with efficient linear-response theories.

PACS numbers: 71.15.Qe,71.38.-k

I. INTRODUCTION

Electron-phonon coupling (EPC) occupies a prominent
role in various fields of condensed matter physics, includ-
ing phonon-mediated superconductivity, photoemission
band gap renormalization, current carriers inelastic scat-
tering or the lifetime of hot electrons. Concerning the cal-
culation of EPC matrix elements on the ab initio level, up
to now, mainly density functional theory (DFT)1 and its
perturbative linear response extensions (DFPT)2,3 have
been applied, providing important information at the mi-
croscopic level.

Recently, several studies questioned the accuracy of the
DFT-based EPC matrix elements when obtained with
(semi)local functionals such as LDA or PBE.4 By way
of example, the electron-phonon coupling involving spe-
cific electronic and phonon modes in graphene5,6 and
graphite,7 the value of the electron-phonon coupling po-
tential to states at the Femi level in the electron-doped
fullerene,8,9 superconducting bismuthates and transition-
metal chloronitrides,10 or the renormalization of the pho-
toemission band structure of pentacene11 and diamond
crystals,12 were shown to be affected by a significant un-
derestimation of the EPC matrix elements when calcu-
lated within DFT and (semi)local functionals.

As a cure to such problems, many-body perturba-
tion theory (MBPT) techniques within the so-called GW
approximation13–18 showed a clear improvement when
compared to available experimental data.5,7,9–12 Unfor-
tunately, the kind of theories that are available within
DFT, and in particular the powerful DFPT formalism,2,3

are not yet available within the framework of MBPT.
Existing GW calculations of EPC matrix elements have
been therefore based on the frozen-phonon approach, ne-
cessitating a stepwise displacement of the atoms along
the phonon modes with an explicit evaluation of the elec-
tronic structure on the GW level for each step. This de-
manding approach cannot be reconciled with very large
unit cells and is thus only feasible for zone-center or
zone-boundary phonon modes. Going beyond the frozen-
phonon approach, in order to access EPC matrix ele-
ments on the GW level for a large number of electron
and phonon wave vectors, remains a considerable chal-
lenge to the ab initio community. Significant work is still
needed to come up with a scheme that may allow to gen-
eralize the pioneering above-mentioned studies to a much
larger set of systems.

In the present study, we explore the merits
of the static coulomb-hole plus screened exchange
(COHSEX)14,15,19–27 approximation to the GW self-
energy for the calculation of the electron-phonon cou-
pling matrix elements in the isolated fullerene molecule,
in diamond and in graphene. Our definitions of the rele-
vant EPC matrix elements follow previous studies related
to the superconducting transition in the fullerides,8,9

the zero-point motion renormalization of the gap in
diamond12 and the gap opening through electron-phonon
coupling in graphene,5 respectively. For the same set of
systems, we also explore the accuracy of the constant-
screening approximation, namely the assumption that
the screened Coulomb potential can be considered, to lin-
ear order, as a constant upon small changes of the atomic
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positions. Whereas COHSEX leads to non-negligible dis-
crepancies, this latter approximation will be shown to be
robust and accurate. The present results offer impor-
tant perspectives in making the GW formalism amenable
to the study of condensed matter phenomena involving
electron-phonon coupling.

II. METHODOLOGY

We briefly introduce the many-body perturbation the-
ory Green’s function formalism, providing a solid frame-
work for the calculation of quasiparticle energies E. In
such an approach, the one-body quasiparticle eigenvalue
equation reads:

(
−∇2

2
+ V ion(r)

)
φ(r) + V H(r)φ(r)

+

∫
dr′ Σ(r, r′;E)φ(r′) = Eφ(r),

where V ion and V H are the ionic and Hartree poten-
tial, respectively. The self-energy Σ(r, r′;E) replaces
the well-known exchange-correlation potential of den-
sity functional theory or the exchange operator in the
Hartree-Fock formalism. In general, it is non-local,
energy-dependent and non-Hermitian. Derived within
Schwinger’s functional derivative approach to perturba-
tion theory,13 the GW approximation to the self-energy
leads to:

ΣGW (r, r′;E) =
i

2π

∫
dωeiδωW (r, r′;ω)G(r, r′;E + ω),

whereG andW are the time-ordered one-particle Green’s
function and the dynamically screened Coulomb poten-
tial, respectively, and δ = 0+ a small positive infinitesi-
mal.
The Coulomb-hole plus screened-exchange (COHSEX)

representation of theGW self-energy was originally intro-
duced using a time representation of G, W and Σ.14,20,21

We follow Hybertsen and Louie15 by using the following
spectral representations of G and W :

G(r, r′;E + ω) =
∑

n

φn(r)φ
∗

n(r
′)

E + ω − εn − iδsgn(εn − µ)

W (r, r′;ω) = v(r, r′) +

∫
∞

0

dω′
2ω′B(r, r′;ω′)

ω2 − (ω′ − iδ)2
,

where G has been written in terms of one-body eigen-
states φn and eigenenergies εn, typically starting DFT
Kohn-Sham or Hartree-Fock solutions, and W in terms
of its spectral function B. These expressions allow to
obtain the pole structure of both G and W . From the
residue theorem, one then rapidly obtains an exact de-
composition of Σ:

ΣSEX(r, r′;E) = −
occ∑

n

W (r, r′;E − εn)φn(r)φ
∗

n(r
′)

ΣCOH(r, r′;E) =
∑

n

φn(r)φ
∗

n(r
′)P

∫
∞

0

dω′
B(r, r′;ω′)

E − εn − ω′
,

where P indicates the principal value. ΣSEX , which in-
volves a summation over the occupied states only, orig-
inates from the poles of G. It is called the screened ex-
change interaction in analogy to the bare exchange term
that can be obtained by replacing W with the energy-
independent bare Coulomb potential v. ΣCOH originates
from the poles of W and represents the Coulomb-hole
contribution, since it can be shown to be related to the
interaction of an electron with its related adiabatically
built correlation hole.
The static approximation to the exact COHSEX de-

composition assumes that (E−εn) ≃ 0 for all (n), leading
to simplified static screened exchange and Coulomb-hole
expressions, namely:

ΣSEX
static(r, r

′; 0) = −

occ∑

n

W (r, r′; 0)φn(r)φ
∗

n(r
′)

ΣCOH
static(r, r

′; 0) =
1

2

∑

n

φn(r)φ
∗

n(r
′)W̃ (r, r′; 0)

=
1

2
δ(r− r′)W̃ (r, r′; 0).

Here, W̃ = (W−v) is the difference between the screened
and bare Coulomb potential. As a result, besides being
a static approximation, this Coulomb-hole term is also
local in space. Such a static COHSEX approximation
(labeled COHSEX here below) was shown to yield too
large gaps in the case of semiconductors.15 By way of
example, in the present case of the C60 molecule, the
COHSEX gap is found to be 5.3 eV, i.e. 0.4 eV larger
than the ∼4.9 eV experimental gap.67 Nevertheless, this
has to be compared to the starting 1.6 eV DFT-LDA
Kohn-Sham gap which is dramatically too small.
While it cannot be claimed that the static COHSEX

approach is a good approximation to absolute quasipar-
ticle energies, we emphasize that we are interested in
quasiparticle energy differences upon small (infinitesi-
mal) atomic lattice motions. The main assumption on
which we rely to calculate the electron-phonon coupling
within the COHSEX approximation is that the varia-

tions of the dynamical contribution to the self-energy
can be neglected. This can be a priori rationalized by
emphasizing that dynamical interactions are driven by
the plasmons dynamics, collective excitations less sensi-
tive to small atomic displacements than single-particle
excitation energies and wave functions. It remains, how-
ever, that besides the static approximation, the spatially
local character of the static COH term is at odds with
the nonlocality of the full GW self-energy.
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In order to further justify the following results concern-
ing the constant screening approach, namely the second
approximation we explore in this study, it is instructive
to consider the GW plus Bethe-Salpeter formalism.28–30

The latter is a many-body perturbation theory approach
concerned with describing the linear response of a sys-
tem with respect to a time-dependent external perturba-
tion and thus the Bethe-Salpeter equation (BSE) is the
MBPT analogue to time-dependent DFT. At the heart
of the GW/BSE approach lies the variation (∂GW/∂λ),
where the “perturbation” λ is the one-body Green’s func-
tion G. The most common approximation that has been
shown to be remarkably accurate31–33 is to replace the
GW self-energy by its static COHSEX approximation,
and to consider further that (∂W/∂λ) = 0. It is such a
simplified scheme we aim to explore in the present study,
differing in the fact that the perturbation λ is now in-
duced by a vibrational distortion of the system.

III. TECHNICAL DETAILS

The many-body GW and COHSEX calculations for
the isolated C60 fullerene are performed using the Fiesta
code, an implementation of the GW formalism within
a Gaussian basis.34–36 We start from DFT-LDA eigen-
states calculated with the Siesta package37 and a triple-
zeta plus polarization (TZP) basis38 for the description
of the valence orbitals combined with standard norm-
conserving pseudopotentials.39 We use the resolution of
the identity technique (RI-SVS) with an even-tempered
auxiliary basis set formed of four Gaussians per angular
channel (up to d character) with exponents between 0.2
and 3.2 Bohr−2. With such a basis, our G0W0@LDA
ionization potential and HOMO-LUMO gap are found
to be 7.33 eV and 4.39 eV (B3LYP geometry), respec-
tively, starting from a 1.66 eV DFT-LDA gap. This is in
close agreement with the 7.45 eV and 4.40 eV plane wave
G0W0@LDA values of Ref. 40 (LDA geometry). The
G0W0@LDA gap remains smaller than the ∼4.9 eV ex-
perimental value, an issue that will be addressed by the
partially self-consistent scheme used in the present study,
as discussed below.
Following Ref. 8, we use the relaxed structure and

phonon eigenmodes generated within a DFT-B3LYP ap-
proach using a 6-311G(d) basis. This was shown to pro-
vide vibrational frequencies in excellent agreement with
Raman measurements.8,41 Concerning the calculation of
the EPC matrix elements, our present study follows
the approach described in Refs. 8,9, where the electron-
phonon coupling strength associated with the (electron-
doped) lowest unoccupied 3-fold degenerate t1u molecu-
lar orbital (LUMO) has been explored within DFT and
GW . The specific choice of the LUMO level is dictated
by the physics of the phonon-mediated superconducting
transition in the fullerides.42,43 We adopt the standard
definition of the effective electron-phonon coupling po-
tential V ep that enters e.g. the McMillan formula for

the superconducting transition temperature through the
dimensionless parameter λ = N(EF )V

ep, where N(EF )
is the density of states at the Fermi level. Namely, V ep

reads in the so-called molecular limit:44,45

V ep =
1

9M

∑

ν

1

ω2
ν

3∑

m=1

∣∣∣∣
∂ǫm
∂uν

∣∣∣∣
2

. (1)

Here, M is the mass of the carbon ions, ων is the fre-
quency of the vibrational mode with index (ν) and uν is
the vibrational polarization vector. As already discussed
before, the electronic states with energy (ǫm) are lim-
ited to the 3-fold degenerate LUMO level. From group
theory analysis it follows that only the Hg and Ag vi-
brational modes can couple to these states. A schematic
representation of the t1u level splitting as a function of
the deformation amplitude along a Hg mode is provided
in Fig. 1(a). The EPC matrix elements are consequently
related to the slopes (∂ǫm/∂uν), showing a strong depen-
dence on the formalism adopted to calculate the energies
ǫm. These energy derivatives are calculated within the
frozen phonon approach, using a symmetric five points
finite-difference formula.
Such an effective electron-phonon potential was calcu-

lated for C60 in Refs. 8,9, both within DFT using diverse
(semi)local and hybrid exchange-correlation functionals
and GW . While DFT-LDA values were shown to signif-
icantly underestimate the coupling energy, DFT calcula-
tions performed with global hybrids containing 20%-30%
of exact exchange and the GW approach were found8,9 to
compare favorably to gas phase experimental data.46,47

As a drawback of DFT calculations with hybrids, it was
evidenced that the resulting V ep potential would quickly
increase with the amount of exact exchange, yielding the
usual question of the proper choice of the functional pa-
rameters for a given system.
In the present study, we are concerned with explor-

ing simplified GW schemes, i.e approximations reducing
the needed computational effort. As such, quasiparti-
cle energies are evaluated at a single-shot COHSEX and
a partially self-consistent evCOHSEX level, where the
quasiparticle energies are reinjected self-consistently in
the construction of G and W , while keeping the start-
ing Kohn-Sham LDA wave functions unchanged. Our
reference point are partially self-consistent evGW calcu-
lations with self-consistency on the eigenvalues as pre-
sented in Ref. 9 for the calculation of the EPC matrix
elements in C60. Such a simplified approach to full self-
consistency, justified by the dramatically too small start-
ing point DFT-LDA gap for small isolated molecules,
has been shown in the case of gas phase organic systems
to produce more accurate ionization potentials and elec-
tronic affinities,34,35,48–51 together with improved optical
excitation energies at the GW/BSE level,36,52–54 when
LDA or PBE Kohn-Sham eigenstates are chosen as start-
ing points. Consistently, when starting from DFT-LDA,
EPC matrix elements in C60 were also found to be in
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FIG. 1: Schematic representation of changes in the electronic structure under phonon distortion: a) in C60, the 3-fold LUMO
levels (blue) split under a distortion (red) along a Hg phonon mode. b) In graphene, an energy gap ∆E at the Dirac point is
opened (red) when distorting the equilibrium structure (blue) along the Γ−A′

1 or K −E2g phonon modes. c) In diamond, the
lowest lying conduction bands at Γ/X (blue) are renormalised by their coupling to a zone-boundary phonon mode. For clarity,
only the states showing the largest shift are plotted (red dot, see text).

closer agreement with experiment within evGW as com-
pared to G0W0.

9

For the periodic diamond and graphene systems, we
use the Yambo code which implements many-body per-
turbation theory within a plane wave formalism.55 The
starting DFT Kohn-Sham eigenstates are generated with
the Abinit code.56 In the case of graphene, the running
parameters are identical to those used in a previous GW
study of the electron-phonon coupling in this material,5

namely we use a = 2.46 Å as lattice parameter, 15 a.u.
distance between the layers,57 36 × 36 × 1 k-points for
the GW calculations in the Brillouin zone (BZ) corre-
sponding to the primitive (2-atoms) cell and the nearest
equivalent k-grid in the BZ corresponding to the super-
cell needed to describe zone-boundary (q = K) phonons
in the frozen-phonon approach. The energy cutoff on the
plane wave basis was set to 60 Ry. All conduction bands
within an energy range of 45 eV above the Fermi level
were used to build G and W , and a cutoff of 4 Ha for the
construction of the dielectric function. The Godby-Needs
plasmon pole model was employed for the dynamical di-
electric constant entering in W .
As schematically described in Fig. 1(b), we focus on

the splitting ∆E of the degenerate occupied and unoc-
cupied levels at the Dirac point caused by the coupling
to the qν = Γ-E2g optical mode at zone center together

with the zone-boundary qν = K-A
′

1 phonon, for which
the strongest renormalization of the coupling constant
have been observed upon replacing the DFT-LDA ap-
proach by the G0W0 formalism.5,6 The EPC matrix ele-
ments of interest are thus here related to the derivatives:
(∂∆E/∂uqν), namely (see Ref. 5):

〈D2
qν〉 =

1

Aqν

(
∂∆E

∂uνq

)2

, (2)

expressed in (eV/Å)2, where Aqν equals 16 and 8 for

qν = Γ-E2g and qν = K-A
′

1, respectively. We per-
formed “single-shot”G0W0 and COHSEX calculations on
top of DFT-LDA results, namely the standard perturba-

tive (non self-consistent) GW approach to obtain quasi-
particle energies.
For diamond, following Antonius and coworkers,12 we

have used a relaxed DFT-LDA geometry (lattice parame-
ter a = 3.591 Å) with a plane wave cutoff energy of 80 Ry
and norm-conserving pseudopotentials. All calculations
were performed with a 8x4x4 uniform Monkhorst-Pack
grid to describe the supercell necessary for the frozen-
phonon simulation of the (q = X) phonon. We have
used 160 bands and a cutoff of 8 Ha for the construc-
tion of the dielectric function and the GW self-energy.
Following Refs. 12 and 58 where the diamond band-gap
renormalization by the zero-point motion was studied,
we define the relevant EPC matrix elements as the sec-
ond derivative of the electronic eigenvalues with respect
to the phonon displacements at equilibrium:

∂ǫmk

∂nνq

=
h̄

2Mωνq

∂2

∂u2
νq

ǫmk, (3)

where nνq is the occupation of the phonon state (ν) of
wave vector q. The EPC matrix elements are now re-
lated to the temperature dependent renormalization of
the electronic bands. We evaluate the second-derivative
of the eigenvalues using a symmetric five-point finite-
difference formula with displacements of 0.01, 0.02 and
0.03 Å. In Ref. 59, it was already shown that stan-
dard DFT and DFPT methods with (semi)local function-
als strongly underestimate (by ca. 30%) the zero-point
renormalization of the direct gap of diamond compared
to experiment, while Ref. 12 demonstrated that G0W0

calculations restored the good agreement between theory
and experiment. We focus here below on the renormaliza-
tion of the lowest conduction band edge at (mk = X1c)
and (mk = Γ15c) by the coupling to the (νq = X4)
phonon modes at the zone-boundary (see Fig. 1c). It
is for such a phonon wave vector that the EPC matrix
elements were found to be large and that also the GW
correction was shown to be the most significant.12 Fol-
lowing Ref. 12, the provided EPC matrix elements are
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LDA G0W0 G0W0(W ) COHSEX COHSEX(W )
Graphene

Γ-E2g 44.3 68.1 (65.2) 72.0 81.5 83.2

K-A
′

1 88.6 201(187) 207 260 256
Diamond

Γ15c 1.281 0.611 0.657 1.311 1.445
X1c -2.009 -1.031 -1.066 -2.124 -2.273

TABLE I: Calculated EPC-related quantities (see text) for graphene and diamond. In the case of graphene, these correspond
to the splitting of the degenerate highest valence and lowest conduction band at the Dirac point under the influence of a

(qν = Γ-E2g) and (qν = K-A
′

1) phonon mode and are expressed in (eV/Å)2. Number in parenthesis are obtained with a
plasmon pole energy of 7 eV, close to the graphene π-plasmon energy, instead of the 27 eV originally used in Ref. 5 (see text).
For diamond, these are the results of equation (3) for the X1c and Γ15c conduction states and for the X4 zone-boundary phonon
mode only (values in eV). This corresponds to twice the zero-point renormalization arising from this given phonon mode (see
Ref. 12).

averaged over the degenerate electronic manifold consid-
ered (namely the 3 degenerate levels at zone-center and
the 2 degenerate levels at the X1c zone boundary).

IV. RESULTS

A. Reference GW calculations

We first reproduce for validation and for reference the
previously published GW calculations related to EPC
matrix elements in graphene, diamond and C60. Our re-
sults are compiled in Table I for diamond and graphene
and in Table II for C60, respectively. Our LDA and G0W0

values for graphene are close to those found in Ref. 5,
namely e.g. 201 eV/Å (G0W0 value, present study) for

the largest matrix element with the (K-A
′

1) phonon, to
be compared to 193 eV/Å in the previous study.57 The
difference can be explained by an increased five points,
instead of only two, finite-difference formula, and by the
increase of the dielectric matrix size energy cutoff, from 2
to 4 Ha cutoff. We also verified that changing the Godby-
Needs plasmon model input finite frequency, from the
(default) 27 eV value in Ref. 5 to a 7 eV value closer to
the π-plasmon resonance in graphene, does not change
significantly the calculated EPC strength (see numbers
in parenthesis in the Table I). Such differences are neg-
ligible with respect to the more than 100% increase as
compared to the LDA value.
For diamond, the EPC contribution associated with

the mk = Γ15c conduction states are in good agree-
ment with the LDA and G0W0 results of Antonius and
coworkers,12 i.e. we find a 11 meV difference with re-
spect to their EPC in the case of LDA, while we find a
difference of 8 meV for the G0W0 results.68 These small
variations can be ascribed to the different pseudopoten-
tials (Ref. 59 showed that pseudopotentials can lead to
errors up to 50 meV), and to the different convergence
parameters.
Since Ref. 12 focused on the renormalization of the di-

rect band gap at the zone-center, comparison with the
present results for the phonon coupling to the X1c elec-

tronic state cannot be made. Our findings are, however,
very consistent with what is observed for the Γ15c state,
namely a dramatic decrease of the coupling strength with
the X4 phonon mode which, again, is the dominant cou-
pling mode. The coupling energy is indeed found to be
reduced by 52% and 49% from LDA to GW for the Γ15c

and X1c states, respectively. Since the X1c state is closer
to the true conduction band minimum, this is a strong
indication that zero-point motion renormalization of the
indirect gap will certainly also be strongly affected by
the GW correction. The full study of such an effect is
beyond the scope of the present paper.
For C60, the total evGW coupling potential is within

8% of that found by Ref. 9 as a result of the larger TZP
basis used here.38 Our evGW V ep potential is found to
increase by 44% with respect to the corresponding LDA
value, to be compared with the 48% increase obtained
in Ref. 9 with a smaller basis. This indicates the good
convergence of the GW correction to the LDA value. We
note that while DFT and GW calculations are known
to converge very differently with respect to basis size, we
compare in the present study approaches which are much
more similar, namely “standard and approximated” GW
calculations, indicating certainly an even better conver-
gence of the differences we are interested in.

B. The COHSEX approximation

We now explore approximations to the full GW cal-
culations performed in Refs. 5,9,12 and reproduced here
above. We start by the case of diamond. As compared to
the G0W0 calculations, the static COHSEX approxima-
tion is shown to induce errors larger than 100% for the
relevant electron-phonon coupling energy to the Γ15c and
X1c states. In both cases, the static COHSEX approach
strongly overestimates the electron-phonon coupling. A
representation of the errors as compared to the G0W0

calculations is provided in Fig. 2.
The case of graphene is of specific interest since, in

great contrast to diamond and C60, the fundamental gap
reduces to zero in the equilibrium geometry and opens
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Theory Experiment
Mode LDA evGW COHSEX evCOHSEX evCOHSEX(W )

Fullerene
Hg(1) 4.7 5.85 4.99 6.3 6.3
Hg(2) 9.3 10.1 9.99 10.3 11.9
Hg(3) 8.8 12.95 11.96 13.7 15.3
Hg(4) 4.2 5.5 4.9 5.4 5.7
Hg(5) 3.98 4.9 4.5 5.3 5.5
Hg(6) 1.8 1.99 2.05 2.2 2.4
Hg(7) 15.8 25.4 23.3 27.9 26.5
Hg(8) 13.1 18.3 17.1 19.8 19.5
Ag(1) 1.2 1.9 1.85 1.8 1.2
Ag(2) 7.2 13.98 13.2 15.4 12.2

Total Ag 8.4 15.9 15.0 17.2 13.4
Total Hg 61.7 84.96 78.8 90.9 93.1 96.2b,96.5c

Total 70.2 100.9 (108.6a) 93.8 108.1 106.6 106.8b

TABLE II: Mode-resolved V ep
ν coupling potential associated with the 3-fold degenerate C60 LUMO and the corresponding V ep

totals (in meV). For group symmetry reasons, only the Hg and Ag vibrational modes couple to this electronic state.
a Ref. 9,
b Ref. 46, Table V,
c Ref. 47.
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FIG. 2: Relative error of the different approximations with
respect to the G0W0 results for the “thermal renormaliza-
tion” EPC energies (Eqn. 3) for the lowest conduction band
of diamond.

upon phonon distortions. For the optical phonon mode
at the zone-center, the COHSEX approximation leads
again to an increase as compared to the G0W0 value,
even though smaller than in the diamond case with a 20%
error. Such an error becomes larger for the K-A

′

1 mode
with a 29% increase of the EPC-related gap-opening rate.
In the present graphene case, the error induced by the
COHSEX approach remains smaller than the 34% and
56% reduction observed upon using DFT-LDA instead
of G0W0. However, the close to 30% error observed for
the COHSEX calculation of 〈D2

K〉 is clearly significant
(see Fig. 3), questioning again the applicability of the
static COHSEX formalism for EPC matrix elements cal-
culations.
We now consider the C60 case, where we compare

evGW and evCOHSEX calculations. A global increase
of about 7% from evGW to its static approximation is
observed. Besides the Hg(4) and Ag(1) modes showing
very small couplings, the static COHSEX approximation

−60

−40

−20

0

20

40
%

e
rr

Γ (E2g) mode K (A1’) mode

L
D

A

G
0
W

0

G
0
W

0
(W

)

C
O

H
S

E
X

C
O

H
S

E
X

(W
)

L
D

A

G
0
W

0

G
0
W

0
(W

)

C
O

H
S

E
X

C
O

H
S

E
X

(W
)

Graphene

FIG. 3: Relative error of the different approximations with
respect to the G0W0 results for the electron-phonon coupling
in graphene.

is observed again to systematically increase the coupling
strength as compared to evGW .62 This result is consis-
tent with what was observed for diamond and graphene,
even though clearly the error appears to vary from one
system to another.

C. The constant screening approximation

Following the above-mentioned analogy with the
Bethe-Salpeter formalism, we finally test another ap-
proximation, that is the constant screening approach.
Namely, we explicitly calculate the screened Coulomb
potential for the undistorted structure and upon chang-
ing the positions of the ions along the (Rqν) vibrational
eigenmodes, we keep W frozen to the undistorted value.
Formally, this amounts to assuming that: ∂GW/∂uqν ≈
(∂G/∂uqν)W . Such an approach will be labeled GW (W )
or COHSEX(W ) in the following.
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FIG. 4: Relative error of the different approximations with
respect to the evGW results for the Hg-related V ep of equa-
tion (1). For convenience, a comparison to the experimental
data is provided.

In the case of the fullerene, where calculations are per-
formed within a Gaussian basis, special care must be
taken in the implementation of such a constant-screening
approximation. In the auxiliary basis, or resolution of the
identity approach, the bare and screened Coulomb poten-
tials are expressed in terms of an atom-centered auxiliary
basis with the following relations:

[W ]β,β′ =

∫ ∫
drdr′β(r)W (r, r′)β′(r′), (4)

W (r, r′) =
∑

β,β′

β(r)
(
S−1[W ]S−1

)
β,β′

β′(r′), (5)

where S is the overlap matrix in the auxiliary basis. Us-
ing now the notation: W and β for the screened Coulomb
potential and the auxiliary basis for the slightly dis-
torted system, the assumption: W (r, r′) ≃ W (r, r′)
leads straightforwardly to the condition:

[W ]β,β′ ≃ Sββ [W ]β,β′Sβ′β′ , (6)

where Sββ =< β|β > is an overlap matrix between the

auxiliary bases for the perturbed and unperturbed sys-
tems, respectively.
For C60 again, we test the constant screening approx-

imation at the COHSEX level only, namely comparing
evCOHSEX and evCOHSEX(W) calculations of the V ep

energies. While the plasmon-pole approach used for dia-
mond and graphene is based on a fixed finite frequency
pole value independent of the geometry, the real axis
poles contribution to the correlation energy in the con-
tour deformation approach (see Refs. 19,34) implemented
in the Fiesta package changes from one structure to an-
other, leading to difficulties when trying to implement the
constant-W approach within the frozen-phonon scheme.
The results of the constant-screening approximation

are compiled in Tables I and II. For C60, an ex-
cellent agreement is obtained within evCOHSEX(W )
compared to the corresponding evCOHSEX calculations.

Comparing the total coupling, evCOHSEX(W ) and ev-
COHSEX agree within 1.5 %.
We now explore the constant-screening approximation

for periodic diamond. Results are again compiled in Ta-
ble I. For diamond, we observe a 3.4% and 7.5% dif-
ference between G0W0(W ) and G0W0 for the X1c and
Γ15c states, respectively. At the COHSEX level, the
constant screening approximation yields errors of the or-
der of 7.0% and 10.2%, respectively. In summary, while
the COHSEX approximation was failing for diamond,
the constant-W approximation leads again to very rea-
sonnable results, with errors well within 10% at the GW
level. As illustrated in Fig. 2, this error is much smaller
than the error induced by the LDA approximation.
We finally address the case of graphene. Concern-

ing the coupling with the zone-center optical mode, the
constant-W approach leads to a 5.7% and 2.1% error
respectively when comparing G0W0(W ) to G0W0 and
COHSEX(W) to COHSEX. In the case of coupling with

the zone-corner K-A
′

1 phonon mode, the discrepancy is
of 3% and 1.5% applying the constant-screening approx-
imation to GW and COHSEX approaches, respectively.
Notice that the results for the constant-screening of the
K-A

′

1 phonon are affected by a numerical error of about
4%, therefore the discrepancy could be slightly larger.
Anyway this difference is much smaller than the error in-
duced by the standard DFT-LDA calculations, but also
much smaller than the error induced by the static COH-
SEX formalism as compared to the reference GW calcu-
lation.

V. DISCUSSION

Clearly, among the two approximations explored here
above, the constant-screening stands as a much better
approach than the static COHSEX for the calculation
of electron-phonon coupling matrix elements within the
GW formalism. Overall, the largest error induced by
the static COHSEX approximation is larger than 100%
in the diamond case, while it is reduced to 7% in the
case of the constant-screening approximation to full GW
calculations.
The static COHSEX approximation is known to al-

ways overestimate band gaps. As proposed in Ref. 8, a
too large band gap should lead to an underscreening of
the electron-phonon interaction and consequently to en-
hanced EPC matrix elements. This is consistent with the
fact that, within Hartree-Fock or with increasing exact
exchange in hybrid functionals, the EPC matrix elements
are found to steeply increase. The Hartree-Fock 〈D2

Γ〉
and 〈D2

K〉 coupling constants in graphene were found to
be about 5 and 30 times larger, respectively, as com-
pared to their GW analog,5 while in C60 increasing the
percentage of exact exchange from 20% to 30% in hy-
brid functionals was found to enhance the V ep energy
by about 15%.8 Such an interpretation matches the ob-
servation that in graphene and C60, the COHSEX EPC
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coupling constants are larger than their corresponding
GW reference. In the case of diamond, where we are
concerned with the second-order derivatives, the effect of
assuming a static approximation may be more difficult
to interpret.
An important observation further is that the Coulomb-

hole term is a local potential in the static COHSEX ap-
proximation, washing out spatial local-field effects, a ob-
servation that may potentially allow to understand the
failure of the COHSEX approximation to reproduce ac-
curately the evolution of the band structure with phonon
deformation. In any case, the large variations of the in-
duced errors from diamond to graphene and C60 is still
to be understood, and we will just stand here on the ob-
servation that the static COHSEX approximation cannot
be trusted to improve on DFT-LDA calculations.
Concerning the neglect of the gradient of W with

respect to the ionic positions, such an approximation
was already tested by Ismail-Beigi and Louie in the
context of excited state ionic forces within the Bethe-
Salpeter formalism,63 showing good agreement with ex-
plicit finite-difference ”exact” BSE calculations for small
CO and NH3 molecules. It is commonly assumed that
the GW/BSE approach is much more resistant to ap-
proximations on W as compared to the GW approach
for (charged) excitations. This is due to cancellations
of errors between the electron-electron and electron-hole
interactions. Namely, any error introduced in W is ex-
pected to affect excitonic interactions and quasiparticle
gaps in opposite ways. Clearly, the present GW study of
the variations of a given quasiparticle energy with respect
to ionic positions cannot benefit from such cancellation of
errors. Still, the constant-screening approximation turns
to be a reliable approach to save on computational cost.
An important consequence of the present findings is

that once the screened Coulomb potential W (r, r′;ω) is
built for the equilibrium geometry, the calculation of
the variations of the quasiparticle energies with respect
to the perturbation (λ) only requires the evaluation of
the variations of the Green’s function G with respect to
the perturbation. This can be performed within stan-
dard DFPT techniques, at least in the case of non-self-
consistent G0W0 calculations where the Green’s function
assumes an explicit form in function of the input DFT
eigenstates. This may invite, for systems such as C60, to
use G0W0 calculations starting from DFT eigenstates ob-
tained with hybrid functionals, which have been shown to
be a better starting point for finite-size systems.54,64–66

VI. CONCLUSIONS

We have explored two approximations for calculating
self-energy gradients of interest for electron-phonon cou-
pling, namely the two simplifications commonly used in
the GW/Bethe-Salpeter calculations, that is the static
COHSEX and the constant screening approximations.
We explored these approaches in the case of diamond,
graphene and C60. Our findings suggest that the COH-
SEX approximation cannot be trusted to improve on the
DFT-LDA values as clearly illustrated in particular in
the case of diamond. On the contrary, the constant
screening hypothesis, namely assuming that W remains
to first order constant with respect to small ionic dis-
placements, seems to be reliable, with a discrepancy no
larger than 10%, even in the difficult case of graphene
where the phonon perturbation dramatically affects the
Dirac cone and the (semi)metallic nature of the graphene
sheet. Even though a deeper understanding of the ori-
gin of the specific difficulties uncountered by the static
COHSEX approximation would allow to better rational-
ize the validity and limits of the tested approximations,
the present results offer promising perspectives to carry
on such many-body evaluations of the electron-phonon
coupling gradients with much reduced computer cost on
realistic systems, including the study of periodic systems
with arbitrary wave vector perturbation. Further studies
are however required on a larger set of systems and physi-
cal observables in order to better assess the interest, with
respect to common DFT calculations, of using the GW
approach, and its various approximations, for calculating
self-energy gradients with respect to ionic positions.
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put. Phys. Commun. 180, 1392 (2009).

56 X. Gonze et al., Comp. Mat. Science, 25, 478 (2002).
57 Notice that in Ref. 5 the interlayer distance between the

graphene sheets is 15 a.u. and not 20 a.u. as it is wrongly
reported in the paper.

58 P. B. Allen and V. Heine, J. Phys. C 9, 2305 (1976); P. B.
Allen and M. Cardona, Phys. Rev. B 23, 1495 (1981).
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