655 research outputs found

    Low-Cost Experiments with Everyday Objects for Homework Assignments

    Full text link
    We describe four classical undergraduate physics experiments that were done with everyday objects and low-cost sensors: mechanical oscillations, transmittance of light through a slab of matter, beam deformation under load, and thermal relaxation due to heat loss. We used these experiments to train students for experimental homework projects but they could be used and expanded in a variety of contexts: lecture demonstrations, low cost students' labs, science projects, distance learning courses...Comment: details on students where added : a section dedicated to the student difficulties and general feedback on this teaching unit. Minor typos were fixed. Published in Physics Educatio

    Controllability indices for structured systems

    Get PDF
    AbstractA new methodology is proposed for the characterization of the controllability indices of linear multivariable systems. Related to the state space representation, a new symbolism dealing only with numbers associated with the position of nonnull terms of matrices is proposed. This symbolism, associated with the graphical digraph representation model, allows one to highlight, from a structural point of view, a list of dimensions of controllable subspaces corresponding one to one with the list of controllability indices

    Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    Get PDF
    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published versio

    Structural, mineralogical, and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia

    Get PDF
    A series of Polynesian pearls has been investigated with particular attention to the structural and compositional patterns of the early developmental stages of the pearl layer. These initial steps in pearl formation bear witness of the metabolic changes that have occurred during the pearl-sac formation. The resulting structurally and biochemically complex structures have been investigated using a variety of techniques that provide us with information concerning both mineral phases and the organic components. Results are discussed with respect to our understanding of the biomineralization mechanisms, as well as for the grafting process

    Cancer Patient Beliefs and Attitudes Regarding Immune Checkpoint Inhibitor Therapy

    Get PDF
    The development and widespread use of immune checkpoint inhibitors (ICIs) have advanced the field of oncology in a short period of time. Despite this, patient perception regarding this new medication class has not been adequately assessed, which may affect treatment decisions and adherence. The Belief about Medicines Questionnaire (BMQ) is a validated survey composed of 18 questions which analyzes patient’s beliefs about the necessity of prescribed medication and concern about the potential adverse events caused by the medication. General medication overuse and harm are also determined. This is the first study to utilize the BMQ for patients on ICI therapy

    Construction and analysis of causally dynamic hybrid bond graphs

    Get PDF
    Engineering systems are frequently abstracted to models with discontinuous behaviour (such as a switch or contact), and a hybrid model is one which contains continuous and discontinuous behaviours. Bond graphs are an established physical modelling method, but there are several methods for constructing switched or ‘hybrid’ bond graphs, developed for either qualitative ‘structural’ analysis or efficient numerical simulation of engineering systems. This article proposes a general hybrid bond graph suitable for both. The controlled junction is adopted as an intuitive way of modelling a discontinuity in the model structure. This element gives rise to ‘dynamic causality’ that is facilitated by a new bond graph notation. From this model, the junction structure and state equations are derived and compared to those obtained by existing methods. The proposed model includes all possible modes of operation and can be represented by a single set of equations. The controlled junctions manifest as Boolean variables in the matrices of coefficients. The method is more compact and intuitive than existing methods and dispenses with the need to derive various modes of operation from a given reference representation. Hence, a method has been developed, which can reach common usage and form a platform for further study

    Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species

    Get PDF
    AbstractNew Aspergillus species have recently been described with the use of multilocus sequencing in refractory cases of invasive aspergillosis. The classical phenotypic identification methods routinely used in clinical laboratories failed to identify them adequately. Some of these Aspergillus species have specific patterns of susceptibility to antifungal agents, and misidentification may lead to inappropriate therapy. We developed a matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS)‐based strategy to adequately identify Aspergillus species to the species level. A database including the reference spectra of 28 clinically relevant species from seven Aspergillus sections (five common and 23 unusual species) was engineered. The profiles of young and mature colonies were analysed for each reference strain, and species‐specific spectral fingerprints were identified. The performance of the database was then tested on 124 clinical and 16 environmental isolates previously characterized by partial sequencing of the β‐tubulin and calmodulin genes. One hundred and thirty‐eight isolates of 140 (98.6%) were correctly identified. Two atypical isolates could not be identified, but no isolate was misidentified (specificity: 100%). The database, including species‐specific spectral fingerprints of young and mature colonies of the reference strains, allowed identification regardless of the maturity of the clinical isolate. These results indicate that MALDI‐TOF MS is a powerful tool for rapid and accurate identification of both common and unusual species of Aspergillus. It can give better results than morphological identification in clinical laboratories

    Symphony on strong field approximation

    Get PDF
    This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiellonski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrodinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carre, who passed away in March 2018 at the age of 60

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    Efficient algorithm to compute the Berry conductivity

    Get PDF
    We propose and construct a numerical algorithm to calculate the Berry conductivityin topological band insulators. The method is applicable to cold atomsystems as well as solid state setups, both for the insulating case where the Fermienergy lies in the gap between two bulk bands as well as in the metallic regime.This method interpolates smoothly between both regimes. The algorithm isgauge-invariant by construction, efficient, and yields the Berry conductivity withknown and controllable statistical error bars. We apply the algorithm to severalparadigmatic models in the field of topological insulators, including Haldaneʼsmodel on the honeycomb lattice, the multi-band Hofstadter model, and the BHZmodel, which describes the 2D spin Hall effect observed in CdTe/HgTe/CdTequantum well heterostructures
    corecore