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ABSTRACT 

A new methodology is proposed for the characterization of the controllability 

indices of linear multivariable systems. Related to the state space representation, a 

new symbolism dealing only with numbers associated with the position of nonnull 
terms of matrices is proposed. This symbolism, associated with the graphical digraph 
representation model, allows one to highlight, from a structural point of view, a list of 
dimensions of controllable subspaces corresponding one to one with the list of 
controllability indices. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

The problem of characterizing the feedback-equivalent systems of multi- 
variable linear systems in the state space form was first solved by Brunovsky 
[l], who showed that it is uniquely and completely determined by a list of 
positive integers called the controllability indices of the system C( A, RI. 
Morse [2] extended the canonical representation of 2( A, B) to a more 
general transformation group. In [3], it is shown that there is a close 
relationship between the controllability indices and the controllability sub- 
spaces of a given system C( A, B). The state space can be decomposed into a 
direct sum of controllability subspaces whose dimensions are precisely equal 
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to the controllability indices of %(A, B). But many decompositions of the 
same dimension list are possible even if the ordered list of controllability 
indices is unique. 

Heymann [4] introduced the concepts of input chain and controllability 
chain and showed that they are fundamental feedback invariants of a linear 
system. He showed that the dimensions of the subspaces of these chains are 
in one to one correspondence with the list of controllability indices and hence 
are a complete invariant for the system C( A, B). 

Conceptual tools are defined on the digraph representation, usually 
obtained from the state space equation. They are concerned with the struc- 
tural properties. Indeed, in this approach the numerical values of the 
parameters are not useful. The knowledge of the existence of relationships 
between the variables is the pertinent information. 

The purpose of this paper is twofold. The first part is devoted to the 
characterization of the controllability indices of graphical models from a 
structural point of view. In the second part the authors discuss possibilities of 
associating an input variable to a controllability index. 

2. RECALL OF SOME CONCEPTS 

Let us consider a linear time-invariant dynamic system %A, B) de- 
scribed by Equation (1) where A E 8 ” “, B E % n ’ m, and B is supposed to 
be of full rank. We denote ~8’ = Im B. We have 

i =Ax + Bu. (1) 

2.1. Controllability Indices 
A linear system described by Equation (1) is said to be state-controllable 

if and only if the rank of the controllability matrix [B AB A2B *** A”- rB1 
is n. When the rank is n, the object is to find n independent columns. This 
can be achieved by considering one at a time the columns AkBi, i = 1,. . . , m 
and k = 0,. . . , n - 1, of [B AB A’B -0. A”-‘B] and by eliminating the 
columns depending linearly on the previous ones. The matrix obtained when 
reordering the columns can be written as [B,, . . . , Aq-lB,B,, . . . , 
A”‘n-‘B,,,]. The integers of the list {err, crz, . . . , am} are called the controllabil- 
ity indices. This list corresponds one to one to a list of dimensions of 
controllability subspaces. 
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Consider the space defined by 

(AIB)i =G’ + A9 + *.* +AiPIB, i = 1,2,... . (2) 

The limit of Equation (2), that is, when the dimension of the subspaces no 
longer increases, is denoted by ( Al B) and is the controllable subspace of 
C( A, B). Suppose now the list (~YJ is defined by 

a1 := m = dim 9, 

i 2 2. (3) 

The two lists {a,} and { (Y~) are dual and are linked by the relations 

cri = card(iloj > i}, i > 1, (4) 

cri = cardb[q > i}, i 2 1. (5) 

A splitting decomposition of 9, corresponding to what is called the input 
chain, is not unique, and the decomposition of ( AlB) is not unique relative 
to a given decomposition of 9. However, the list { oi, crZ, . . . , a,,} is unique 
apart from the order of elements. 

2.2. Graph Theoretic Approach 
Lin [5] introduced the notion of structural controllability from a graph 

theoretic point of view for monovariable linear systems. This notion was 
extended in [6] for multivariable systems. Many papers have since been 
presented on the resolution of general control problems. The advantage of 
this approach is that the graph theoretic system representation reflects exactly 
the nonvanishing couplings. Important system properties such as decompos- 
ability, structural controllability, and observability can be checked easily with 
this approach [7, 81. 

This approach is an attempt to overcome the disadvantages of the state 
space theory. The validity of the generic properties can be discussed, but 
supposes the independence of the parameters of the state equation associated 
with the graph. 

2.2.1. Directed Graph. The description of the structure of a system 
distinguishes between exactly known elements (equal to zero) and nonfixed 
values. The following definition is stated. 
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DEFINITION 1. Two systems X(A, B) and C(A,, B,) have the same 
structure if and only if the following two conditions are satisfied: 

(a) The matrices A and A, are of the same type (n X n>, and B and B, 
are of the same type (n X m). 

(b) There exists a permutation matrix T with A, = TAITt and B, = TB,, 
such that all fmed zero entries of A,, B, are mapped on to fixed zero entries 
of A, B and vice versa. 

The description of systems by means of directed graphs is easy from the 
state space description. To each state variable and to each input variable, 
there correspond respectively a state vertex and an input vertex. To each 
nonzero entry of A and B there corresponds an oriented edge from the two 
associated vertices. 

2.2.2. Structural Controllability. In order to characterize the structural 
properties from the directed graph representation, Lin [5] introduced the 
notion of reachability, dilation, and cactus for monovariable systems. We 
recall the main theorem of the structural controllability concept for multivati- 
able systems [6]. 

THEOHEM 1. The system C( A, B) is structurally controllable if and only 
if one of the following two equivalent conditions is satisfied: 

(a) the graph G(A, B) consists of m separated cacti or is spanned by 
cacti; 

(b) the graph G( A, B) contains neither input-unreachable vertices nor 
dilations. 

Another formulation is concerned with the Boolean description of matri- 
ces in order to avoid the difficulty arising in the digraph description of large 
scale systems. The Boolean description of a matrix M is denoted as Ms. The 
term-rank is introduced. It is the dimension of the maximal permutation 
matrix contained in the Boolean one. We recall the main theorem. 

THEOREM 2. The system z(A, B) is structurally controllable zf and only 
if the following two conditions are satisfied: 

(a) all state vertices are input reachable; 
(b) term-rank[ A, i BH] = n. 
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FIG. 1. Example: (a) digraph model; (b) digraph model with two feedback 
edges. 

An equivalent formulation deals with the structural rank of the matrix 
[ Ai B] instead of the term-rank. The structural rank is obtained by drawing 
the maximal width cycle family of the digraph [7]. The system (1) is said to be 
structurally controllable if and only if the structural rank of the concatenated 
matrix [ Ai B] is n and each state variable is reachable from at least one input. 

2.2.3. Example. A simple example is proposed in order to characterize 
the structural properties of a digraph model. Vi and U, denote the two 
inputs. 

All the state vertices of the digraph model of Figure l(a) are input-re- 
achable. By suppressing the edge between the state vertices 1 and 4, the two 
cacti are drawn, and then the structural rank of [ AiB] is n. In another 
approach, two feedback edges can be drawn as shown in Figure l(b), and a 
cycle family of width tr is found. This system is then structurally controllable. 

3. CONTROLLABILITY INDICES 

The problem is to calculate the dimension of the subspaces ( AIB>i and 
to select the essential (that is, independent) columns of the associated matrix 
[B, AB, . . . , A'- IB]. For large systems, the problem is too hard to be done in 
a symbolic way. From a numerical point of view, the rank of the different 
matrices [B, AB, . . . , A’-‘B] can be provided, but is not right for nonfvred 
values of parameters. 
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3.1. New Problem Formulation 
In order to simplify the symbolic calculations involved in the determina- 

tion of the controllability matrix and of its rank, we propose to use a 
symbolism (see Appendix) dealing only with numbers associated with the 
position of the nonnull terms of the matrices. The symbolic calculation of 
[B, AB,..., A’- ‘B] is implemented with the new symbolism. Then, a graph- 
ical representation allows to highlight some “essential” numbers selected in 
the essential columns by drawing one part of the graph. One vertex is kept on 
the new graph for each selected number per essential column, and the rank 
of the corresponding controllability matrix can be found on the graph. 

Two problems must be solved. The first one is the determination of the 
structural rank of the matrix [B, AB, . . . , A’-‘B], and the second one is 
related to the association of an input source and its corresponding controlla- 
bility index. In order to find the structural rank of the matrix [B, AB, . . . , 

A”- ‘B], a reduced digraph is drawn. Its definition is as follows. 

DEFINITION 2. The reduced digraph model associated with the matrix 
[B, AB,..., A’-lB] is drawn by deleting the state vertices which have not 
been reached by the inputs when implementing the calculation of [B, AB, 
. . . ) A’- ‘B]. 

In order to give a better insight into the possible inputs which can be 
associated with the controllability indices, the possible choices for the essen- 
tial columns of the matrix [B, AB, . . . , A’- ‘B] are pointed out. Some essen- 
tial numbers are selected for each essential column. A controllability table is 
written in order to choose these essential numbers in correspondence with 
some controllability subspaces. 

DEFINITION 3. The controllability table is a table containing the number 
of the state vertices which are reached in the digraph model when calculating 
the matrix [B, AB, . . . , A’-‘B]. 

When calculating the structural rank of the matrix [B, AB, . . . , A’- ‘B], 
the vertices corresponding to the essential numbers of the controllability 
table must be stored. The rank of the matrix [B, AB,. . . , A’-lB] of the 
digraph model and the rank of the matrix [B, AB, . . . , A’- ‘B] of the reduced 
digraph model are equal. At most, at each step, the rank of the matrix cannot 
increase to a greater value than at the previous step. These remarks allow us 
tofindthestructuralrankofthematrix[B,AB,...,A’-‘B],i=l,...,n. 
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The new procedure is implemented in one example. 

3.2. Example 
Assume the digraph model of Figure l(a). It is controllable because it can 

be spanned by cacti or, as shown in Figure 1(b), one cycle family of width n 
is found. 

Following the notation and the rules of the Appendix, the state matrix and 
the input matrix are respectively denoted as x = (2,4)i(3)i( )i(8)i(4,6)i(5,7)i 
(6)i(9)i(lO)i(ll, 13)i(12)i( )i(14)i(13) and B = (lx(S). 

The controllability matrix, C,, s = [B, AB, A’, B, A3B, A4B,. . . , A”B, 
A13B] is denoted in a symbolic way as 

c* B = [(1);(5),(2,4);(4,6),(3,8);(5,7>8), (9)X4,6,9)> 

(lO)i(S, 7,8, lo), (11,13);(4,6,9,11,13), (12,14)i 

(5,7,8,10,12,14), (13);(4,6,9,11,13), 

(14):(5,7,8,10,12,14), -1. 

The problem is now to select at each step i the essential columns of the 
matrix [B, AB, . . . , A’- lB], i = 1,. . . ,14. In other words, a number can be 
chosen for each essential column. The corresponding variable is said to be 
essential. 

A list of numbers tJ(numbers) is associated with each input source vi. A 
number is added to the list of an input source if the corresponding column of 
the matrix [ AiPIB] is essential in the matrix [B, AB,. . . , A”-‘B]. The lists 
are regrouped in List[ U,(numbers), . . . , U,(numbers)]. In general, there are 
several possibilities. Then, q is calculated, knowing that it is the difference 
between the dimension of the subspace 9 + A.%’ + .** +A’-‘9 and that of 
the subspace 9 + A9 + 0-a +Ai-2S’. 

Table 1 is the controllability table of the studied digraph. The last 
columns of the controllability matrix are not written, because they are not 
useful in the study. 

The goal is now to find the essential columns of the controllability matrix 
of Table 1 with the aid of the digraph representation. At each step, we have 
to keep in the reduced digraph representation one vertex per row and per 
column of the controllability table. 

(1) Rank of 9’. Th e selected numbers are 1 for the first input and 5 for 
the second input. The reduced digraph containing the variables 1 and 5 is 
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TABLE 1 
FIRST COLUMNS OF THE CONTHOLLABILITY TABLE 

1 5 
2,4 4,6 
3,8 5, 7,8 
9 4,6,9 
10 5,7,9, 10 

11, 13 4,6,9,11, 13 
12,14 5,7,8, 10, 12,14 

13 4,6,9, 11.13 
14 5,7,8,10,12,14 

spanned by cacti; thus the structural rank of B is 2. Then 9 = Im(l,5), 
(Y, = 2, and List[U,(l), U2(5)]. 

(2) Rnnk oj- 9’ + AS’. Tl ie reduced digraph of Figure 2 is not spanned 
by cacti, but it contains two disjoint cacti which involve four vertices. One 
possible choice is for example the numbers 1 and 2 for the first input and the 
numbers 5 and 4 for the second input. Therefore, the structural rank of the 
matrix [B, AB] is 4. There are three possibilities, according to Table 1: 
99 + A&? = Im(1, 2, 4, 5), 9’ + A9 = Im(l, 2, 5, 6), or 9 + AS’ = 
Im(I, 4, 5, 6), and we ha\~ cre = 2 and List[U,(l, 2), U,(5, 4)I, 
List[U,(l, 2) U2(5, S)], or List[U,(l, 4), U,(5,6)]. 

(3) Rank oj- 9 + A9 + A’&‘. The reduced digraph of Figure 3 is not 
spanned by cacti, but it contains two disjoint cacti involving six state vertices. 
Following Table 1, there are three possibilities: 9’ + AS’ + A’S’ = 
Im(l,2,3,5,6,7), 9’ + AS’ + A’S = Im(l,2,3,4,5,8), or 9 + A9 + 
A’S? = Im( 1,4,5,6,7, S), and we have a:) = 2 and List[U,(l, 2,3), U,(5,6, ‘711, 
List[U,(l, 2,3), U,(5,4,8)1, or List[U,(l, 4,8), U,(S, 67)1. 

“-Y 
UZ 

FIG:. 2. Subspace c% + Ac%‘. 
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a 

FIG. 3. Subspace .B’ + Aa + A’s. 

(4) Rank of 9 + A.9 + A29 + A39. The reduced digraph of Figure 
4 is spanned by two cacti involving nine state vertices. We have to keep 
height state vertices in the reduced digraph, according to Table 1, in order to 
find a digraph spanned by two cacti involving eight state vertices. The 
numbers of these state vertices are 1, 2, 8, and 9 for the first input and 5, 6, 

7, and 4 for the second input. ?Z’ + AZ% + A29 + A39 = 
Im(l, 2,4,5,6, 7,8,9) and (Ye = 2. 

(5) Rank of 9 + AS’ + A’S&’ + A39 + A49. The reduced digraph of 
Figure 5 is spanned by two cacti involving 10 state vertices. Following Table 
1, one possible list is List[ U,(l, 2,3,9, lo), U2(4, 5,6,7,8>], and we have 

?B + A9 + A29 + A3S5’ + A49 = Im(l,2,3,4,5,6,7,8,9,10> and os = 2. 
(6) Rank of 9’ + A9 + A2S’ + A358 + A4.S’ + A5L5’. The reduced 

digraph of Figure 6 is not spanned by cacti, but contains two disjoint cacti 
involving 11 state vertices. Therefore, the dimension of G? + As + A29 + 
A3&? + A49 + A599 cannot be 12; it is 11. 

The dimension of the controllability subspace increases by 1 in this step. 
Thus (Ye = CYT = Lx* = c$ = 1. Finally, the two controllability indices are 
ui = 5, a, = 9 or crI = 9, u, = 5 according to the choice of the list. There 

a 

FIG. 4. Subspace z%’ + A.%’ + A’99 + A’.%?. 
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41 5 u, 
a 

F 9 
6 I 

10 

FK. 5. Subspace ii? + A@ + A29 + A%9 + A4B’. 

are nine possible lists. The simple choice in following some paths in the 
digraph representation. Two lists are List[U,(l, 2,3,9, 10, 11,12, 13, 141, 
U2(5, 6, 7,4, S)] or List[U,(l, 2, 3, 9, lo), U,(S, 6, 7,4,8, 11, 12, 13, 1411. In 
Table 2 one result is shown. 

3.3. Proposed New Procedure 
A procedure is now proposed which has been developed from a mathe- 

matical point of view with the symbolism of the Appendix. 

PROCEDURE (Controllability indices). 

Step 1: Number the dynamical elements, and verify that the structural 
controllability property is satisfied on the digraph representation. If 
the system is controllable, go to step 2, else stop the procedure. 

FIG. 6. Subspace .D + A9 + A’s3 + A%? + A498 + A5LZ9. 



CONTROLLABILITY INDICES FOR STRUCTURED SYSTEMS 285 

TABLE 2 
CONTROLLABILITY SUBSPACES FOR THE EXAMPLE OF FIGURE 1 

Retained 

B, B, numbers 

(1) 
(2X 4 
(3), 8 

(9) 
(10) 

(11X I3 
(12X I4 

(13) 
(14) 

(5) 
4, (6) 

5, (7) 8 
(4), 6,9 

5,7, (8), IO 
4,6,9,11, 13 

5,7,8,10, 12, 14 
4,6,9,11, 13 

5,7,8, 10, 12,14 

li5 
2i6 
3:7 
9;4 

10% 
11: 
12; 
131 
14; 

a -2 1- 

crp = 2 
(YG = 2 
a‘$ = 2 
as = 2 
a6 = 1 
(Y; = 1 
a# = 1 
CQ = 1 

Step 2: Number the state matrix and the input matrix with the new 
formulation. 

Step 3: Calculate the controllability matrix with the new formulation, and 
complete the controllability table. 

Step 4: Set i = 1, List[U,(numbers), . . . , U,,,(numbers)] = List[U,(0), . . . , 
U,,(rzrN, a1 = m. 

Step 5: Draw the reduced digraph corresponding to the matrix [B AB ... 
A’- ‘B]. 

Step 6: Find the greatest controllable subspace contained in the reduced 
digraph that verifies these two conditions: 

Its dimension is at most Ci:‘, q, for i 2 2 and m for i = 1. 
Choose at most q, numbers, one number per column, in the matrix 

A”- ‘B, n = 1,. . . , i - I, and at most cr_ 1 numbers in the matrix 

A’-‘B. If no number is retained in one column of the matrix AkB, 
one number must be omitted in the same column of the matrices 

AIB, 1 a k. 

Step 7: Write all the possible lists List[ Ur(numbers), . . . , u,,,(numbers)] ac - 
cording to the number of controllable variables. Calculate q. 

Step 8: If i = 1~ or if all the numbers are selected in List[U,(numbers), . . . , 
U,,,(numbers)], then go to step 9, else i 6 i + 1 and go to step 5. 

Step 9: Derive the list { cri} from the list { CQ}, and write the possible full rank 
matrices drawn from the controllability matrix [B, AB, . . . , A”- 'B]. 

During the implementation of the procedure, some conditions have to be 
verified. For example, the dimension of a controllable subspace cannot 
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increase to a greater value than at the previous step, that is q >, oj if i < j. 

If a new number of one column of A’- ’ B cannot be retained, then the list of 
the corresponding input source cannot increase any more. Additionally, at 
each step there may exist several lists List[U,(numbers), . . . , U,,,(numbers)]. 

4. CONCLUSION 

In this paper, we have provided a new characterization of controllability 
indices for linear multivariable systems represented by digraph models. It is 
shown that it may be relevant to employ a new symbolism for the matrices, 
especially for the implementation of the algorithm on a computer. Neverthe- 
less, the result can be achieved purely by graphical means. 

Lastly, let us remark that the list of the observability indices can be 
obtained in exactly the same manner. 

APPENDIX. MATRIX SYMBOLISM 

Suppose 

“11 ale a13 

M = azl a22 a23 1 and N = 

1 0 a32 0 1 

A symbolism is proposed in order to deal 
the matrices. The first column of M is 
(1, Z), where the numbers correspond to 
one nonnull variable. 

only with the nonzero elements of 

(all> a21, 0)‘. It is represented by 
the indices of the rows containing 

In order to describe completely the matrix, we introduce a separator 

1 b 31 b32] 

between columns of the matrix. It is denoted as i. Then the matrix M can be 
rewritten as a = (l,Z)i(l, 2,3)i(l, 2). Th e overbar means that the informa- 
tion regarding the values of the coefficients is lost. 

The object is now to find the position of the nonzero elements of the 
product MN if n/r = (I, 2)i(l, 2,3)(1,2) and E = (1,3x(2,3). 

Suppose two matrices A and B, with A = (aij) and B = (bij). The 
product is AB = (C,a,, bkj). The coefficients of the jth column of the matrix 
AB are then derived by summing the coefficients of each row of A multi- 
plied by the nonzero coefficient of the jth column of the matrix B. In other 
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words, the numbers in the jth column of the matrix AB are obtained by 

considering the numbers in the jth column of the matrixT and gathering all 
the numbers of the corresponding column of the matrix A. 

The matrix MN is a two column matrix. The nonzero elements without 
numerical cancellation of the first column of MN are obtained by gathering 

the numbers in the first and third positions of the matrix M, because the first 
column of N is (I, 3). In the same way, the second column is obtained by 

gathering the numbers in the second and third positions of the matrix M. 

Then MN = (1,2)i(l,2,3). 

REFERENCES 

P. Bnmovsky, “A classification of linear controllable systems,” Kybernetika No. 3, 
pp. 173-187 (1970). 
A. S. Morse, Structural invariants of linear multivariable systems, SZAM J. Control 
Optim. 11(3):446-465 (1973). 
W. M. Wonhan and A. S. Morse, Feedback invariants of linear multivariable 
systems, Automatica, No. 8, pp. 93-100 (1972). 
M. Heymann, Controllability subspaces and feedback simulation, SIAM J. Control 
Optim. 14:769-789 (1976). 

C. T. Lin, Structural controllability, IEEE Trans. Automat. Control AC-19 
201-208 (1974). 
R. N. Shields and J. B. Pearson, Structural controllability of multi-input linear 
systems, IEEE Trans. Automut. Control AC-21(2):203-212 (1976). 
K. J. Reinschke, Multivariable Control. A Graph-Theoretic Approach, Lecture 
Notes in Control and Inform. Sci. 108, Springer-Verlag, New York, 1988. 

N. Andrei, Spawe Systems: Digraph Approach of Large Scale Linear Systems 
Theory, ISR, Verlag TGV Rheinland, 1985. 
C. Sueur and G. Dauphin-Tanguy, Bond graph approach for structural analysis of 
MIMO linear systems, J. Franklin Imst. 328(1):55-70 (1991). 

Receioed 22 June 1994; find mnnusctipt accepted 22 May 1995 


