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Abstract
We propose and construct a numerical algorithm to calculate the Berry con-
ductivity in topological band insulators. The method is applicable to cold atom
systems as well as solid state setups, both for the insulating case where the Fermi
energy lies in the gap between two bulk bands as well as in the metallic regime.
This method interpolates smoothly between both regimes. The algorithm is
gauge-invariant by construction, efficient, and yields the Berry conductivity with
known and controllable statistical error bars. We apply the algorithm to several
paradigmatic models in the field of topological insulators, including Haldaneʼs
model on the honeycomb lattice, the multi-band Hofstadter model, and the BHZ
model, which describes the 2D spin Hall effect observed in CdTe/HgTe/CdTe
quantum well heterostructures.

Keywords: topological insulators, topological metals, cold fermionic gas,
quantum simulation, integer quantum Hall effect

1. Introduction

Topological insulators (TI) are a topological state of quantum matter that constitutes a new
paradigm in condensed matter physics [1–4]. These recently discovered new materials exhibit
unique, fascinating properties such as current-carrying surfaces and edge states, which are
strongly protected against perturbations in either the bulk or the surface of the material [5–10],
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and non-standard exchange statistics of quasi-particle excitations, which offer potential
applications in the context of quantum computation [11–13].

The question of what happens in topological insulators when the Fermi energy no longer
lies inside the gap between two energy bands is by no means rhetorical but of high practical
importance. In fact, this situation naturally occurs in the experimental process of production of
candidate samples of topological insulators such as Bi2Se3 and Bi2Te3 compounds. These are
used, for instance, in cooling devices due to their favorable thermoelectric properties. The
chemical composition can be well-controlled and adjusted to the composition of the desired
topological insulator. However, it is much more demanding to control the level of the Fermi
energy, which for many samples lies within the bulk energy bands instead of the insulating
energy gap, thereby invalidating them as true TIs. This difficulty has motivated the
development of sophisticated molecular beam epitaxy (MBE) techniques to precisely control
the growth of ultra-thin Bi2Se3 and Bi2Te3 films [14, 15]. Likewise, in two-dimensional TIs it is
possible to adjust the Fermi energy to lie either in the band gap or the bulk bands.
Experimentally, in CdTe/HgTe/CdTe quantum wells, formed by a thin layer of HgTe embedded
between two CdTe layers, this can be achieved by an elaborated MBE technique that allows one
to control the thickness of the intermediate HgTe layer and thereby tune the position of the
Fermi energy with respect to the bands [16, 17]. For an appropriate thickness, the Fermi energy
lies in the gap between the bulk bands, and the heterostructure shows the desired characteristic
topological insulating behavior with a quantized spin conductivity of e h2 /2 .

Complementary to solid-state realizations, cold atoms in optical lattices have been
proposed as a realistic platform to experimentally explore the new physics of TIs under
controllable conditions [18–34]. In particular, in these systems the Fermi energy can be
controlled directly by the filling of atoms in the lattice. There are several proposals to measure
the transverse conductivity for both the insulating and the metallic case [20, 31, 34]. In contrast,
in condensed matter systems such as the above-mentioned chemical compounds, the pinning of
the Fermi level to a value inside the bulk bands typically arises due to external causes like
crystal defects and other sources, which are not straightforward to control. As a consequence, in
transport properties and measurements, bulk carriers often dominate over the contribution
stemming from surface or edge states.

Finally, this question also plays a fundamental role in the physics of the anomalous
quantum Hall effect (AHE) [35, 36], which precedes the upsurge of topological insulators as a
prominent field in condensed matter. In the standard quantum Hall effect (QHE), which can be
observed in non-magnetic materials, there is a linear dependence of the Hall resitivity ρxy on an
externally applied perpendicular magnetic field. In contrast, in the AHE, an anomalous
deviation from the linear law is observed in ferromagnetic materials. A complete theory for the
AHE has remained elusive for more than a century, largely due to complications arising from
the fact that there are three main mechanisms that influence the electronic motion and can give
rise to an AHE: the intrinsic mechanism, the skew-scattering mechanism and the side-jump
mechanism [36]. Here, we shall be interested in the so-called intrinsic mechanism for the AHE,
which is the contribution that can be expressed in terms of the Berry-phase curvature and
thereby represents an intrinsic quantum mechanical property of a perfect crystal. This intrinsic
contribution, which is dominant in metallic ferromagnets with moderate conductivity, depends
only on band structure properties and is largely independent of the scattering that affects other
AHE mechanisms.
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Understanding this intrinsic and anomalous contribution has become possible with the
seminal work by Haldane [37], who uncovered by a fully quantum-mechanical treatment—
unlike precedent work based on semiclassical methods [38]—the topological origin of this
contribution and its relation to the physics taking place at the Fermi surface. Haldane showed
that the intrinsic contribution to the AHE conductivity stems from a combination of an integer-
valued part, stemming from the contribution of filled bands, and a part originating from the
Fermi surface; i.e., from the cuts of a partially filled band at the Fermi energy EF (non-integer
valued contribution).

It is crucial to realize that in order to directly apply Haldaneʼs equations [37] to a given
problem, one needs to know precisely the form of the Fermi surface. In practice, except in very
simple model cases, this is not possible, since the band structure of real materials is obtained
from detailed numerical calculations. One is typically given a numerical data set about the
bands instead of an explicit formula. Thus, in practice it is highly desirable to have at oneʼs
disposal a numerical method that is: (i) gauge-invariant, (ii) efficient and (iii) outputs numerical
results with controllable and known error intervals. In this work, we develop such a general and
efficient numerical algorithm to compute the Berry conductivity when the Fermi energy does
not lie within the band gap. In the following, we shall refer to Berry conductivity as the non-
quantized conductivity associated with the Chern number according to the Thouless, Kohmoto,
Nightingale, Den Nijs (TKNN) formula [39] when the position of the Fermi level lies in the
conduction band, so that we recover the TKNN quantized conductivity for the standard
insulating case if the Fermi energy lies in the energy gap between two bands.

Our main results are:

(i) We present a new method to compute the Berry conductivity when the Fermi energy
level is located outside the band gap. We outline the algorithm (schematically summarized
in figure 1), discuss its ingredients and show that it is gauge invariant and efficient
(section 2).

(ii) We emphasize that a central feature of the presented method is that it is endowed with
known and controllable error bars for the non-integer value of the conductivity. This is
essential. When the Berry conductivity is not integer-valued, errors due to approximations
need to be under control in order to distinguish two different values of the observable
conductivity so that one may safely distinguish a topological phase from a trivial phase.

(iii) To test and benchmark the performance of the algorithm, we first apply it to the
paradigmatic Haldane model [40], which has a simple enough structure so that the analytic
form of the two-band energy spectrum is known (section 3.1). Subsequently, we apply the
method to the more complex case of the Hofstadter model [41], which belongs to the class
of multi-band topological insulators, where the band structure information is obtained
numerically (section 3.2). These models are both of importance and have attracted interest
in the field of quantum simulation of topological insulators with cold atoms in optical
lattices. Here, our method provides the theoretical tools that allow one to map out the phase
diagrams in future experiments. Finally, we also apply our method to the Bernevig,
Hughes and Zhang (BHZ) model [16], which is a realistic model that captures the physics
of the 2D spin Hall effect present in systems such as the above-mentioned CdTe/HgTe/
CdTe quantum well compounds (section 3.3). We conclude with a short summary and a
discussion of possible future extensions of the presented method (section 4).
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2. Conceptual outline of the algorithm

2.1. Generalized Berry conductivity

Before presenting our numerical algorithm to calculate the Berry conductivity, in this section
we briefly review the expressions for the intrinsic Hall conductivity for the insulating case
where the value of the Fermi energy lies in the gap between two bands. We also review the
generalized result for the situation in which the Fermi energy lies in a partially filled band [37].

In the insulating case, the Hall conductivity is quantized and proportional to the sum of the
Chern numbers of the occupied energy bands,

∑σ = α
<α

e

h
C . (1)H

E E

2

F

Figure 1. (a) Generic energy spectrum of a system with an energy gap Δ. In the
displayed situation, the Fermi energy falls into the first energy band and defines the
Fermi surface as the equipotential energy line at =αE Ek( ) F (solid line). The projection
of the energy dispersion of the first band is shown as a color-coded plot in the horizontal

−k kx y-plane. (b) For the numerical calculation of the Berry conductivity, the Brillouin
zone is discretized by a finite grid. Momentum space plaquettes with energies αE k( )
entirely below (above) the Fermi energy contribute entirely (not at all) to the Berry
conductivity, whereas plaquettes that cut the Fermi surface contribute partially. (c)
Schematic summary of the numerical algorithm to calculate the Berry conductivity:
after fixing the discretization grid of momentum space and calculating the Berry
curvature contributions by means of the FHS algorithm for each plaquette of the
Brillouin zone, a classical Monte Carlo sampling method is used to determine the
weights with which the individual plaquettes contribute to the conductivity. Statistical
uncertainties in the sampling process result in controlled and statistical errors in the
Berry conductivity.

4

New J. Phys. 16 (2014) 073016 A Dauphin et al



The Chern numbers αC are integer-valued topological invariants, defined in terms of the
integral of the Berry curvature αF k( )xy over the whole Brillouin zone (B.Z.) [39, 42]:

∫π
=

= ∂ − ∂

α
α

α α α

C
i

F d k

F A A

k

k k k

1
2

( )

( ) ( ) ( ). (2)
B Z

xy

xy k y k x

. .

2

x y

The latter is expressed by the exterior derivative of the Berry connection:

= ∂μ
α

α μ αA u uk k k( ) ( ) ( ) , (3)

where αu k( ) is the eigenvector corresponding to the energy band αE k( ).
In the case in which the Fermi energy does not lie in an energy gap between bands, as

schematically shown in figure 1(a), the intrinsic Hall conductivity generalizes to [36, 43]:

C∑σ =
α

α( )E
e

h
, (4)H F

2

with

C ∫π
Θ= −α

α
α( ) ( )E

i
d k F E Ek k

1
2

( ) ( ) , (5)F
B Z

xy F
. .

2

where Θ E( ) denotes the Heaviside function and α denotes the band index. Thus, the
conductivity is the sum of the integer-valued Chern numbers corresponding to fully-occupied
energy bands below the Fermi energy as well as a non-quantized contribution that depends on
the Fermi surface; i.e., it stems from the integral over energy band(s), which are partially filled
at a given Fermi energy EF.

For systems with a particularly simple band structure (e.g., two-band systems), the
expressions for the eigenvalues and eigenvectors of the bands are given in explicit form; hence
the Chern values Cα can be calculated analytically. In general, however, the Hamiltonian system
cannot be diagonalized analytically, and an efficient numerical method to compute the Chern
values is needed.

2.2. Construction and properties of the algorithm

The algorithm we propose to numerically compute the Chern values of equation (12), and
thereby the Berry conductivity of equation (4), is based on a series of controlled
approximations: first, we discretize the two-dimensional Brillouin zone by a finite ×n nB B

grid of small plaquettes at discrete momenta kl (see figure 1(b) and appendix A for details), so
that the integral over the (partially filled) band becomes:

C ∑
π

⟶α
α α( ) ( )E

i
F p E

1
2

, (6)
{ }

F xy l l F
k

,

l

with the Berry curvature contribution:

∫=α α

□
F d k F k( ) (7)xy l xy,

2
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from a small two-dimensional plaquette of size Δ Δk kx y
, and the weighting factors:

∫Δ Δ
Θ= −α

α
□

( ) ( )p E d k E E k
1

( ) . (8)
l F

k k
F

2

x y

The weights αp E( )
l F correspond to the partial area of the plaquette, which is covered by the

Fermi sea; thus =αp E( ) 0
l F ( =αp E( ) 1

l F ) for squares with energies completely above (below)
the Fermi energy EF, and < <αp E0 ( ) 1

l F for momentum space plaquettes that are cut by the
Fermi surface (see figure 1(b)). The choice of the value nB, i.e., the resolution of the momentum
space grid, is important: it can be motivated either by given physical conditions, such as a finite
experimental energy resolution (or, e.g., the finite size of real-space optical lattices, which in
turn induces a smallest characteristic scale in momentum space); or it can be chosen according
to given numerical resources. In appendix F, we derive a convergence criterion in terms of the
grid discretization and provide an error bound due to the grid discretization.

The key of the numerical algorithm is now to evaluate reliably and, under controlled
approximations, the discretized sum of equation (6), whose value converges to equation (4) for
increasingly finer grids.

(i) Gauge-invariant calculation of the Berry curvature. To numerically calculate the Berry
curvature contributions αFxy l, , we employ a numerical algorithm proposed by Fukui, Hatsugai
and Suzuki [44] (FHS algorithm). It is highly efficient, and the discrete sum π ∑ ˜ α

i F1/(2 ) xy lk{ } ,
l

converges rapidly to the correct integer-valued Chern numbers αC , even for a very coarse-
grained discretization of the Brillouin zone. This behavior is rooted in the fact that the algorithm
is based on a lattice gauge formulation [45, 46] instead of a finite difference discretization of the
Berry curvature. In appendix A we provide a brief summary of the FHS algorithm and the
explicit expressions for the lattice strength ˜ α

Fxy l, calculated with the FHS method.
(ii) Efficient estimation of the weights αp E( )

l F . To decide whether a given plaquette in
momentum space contributes entirely, partially or not at all, we use a simple and rapid classical
Monte-Carlo technique: for each plaquette of the grid localized around the discrete momentum
kl, we generate nR uniformly distributed random points kR within the plaquette and compute

αE k( )R , which lies above or below the Fermi energy. Based on the latter, we define the
estimator:

∑Θˆ = −α
α( )( ) ( )p E

n
E E k

1
(9)

{ }
l F

R
F R

kR

for the weighting factors αp E( )
l F .

(iii) Statistical confidence interval and controlled numerical error of the Berry
conductivity. Note that the randomness of this estimation procedure introduces a statistical
uncertainty. Note also that the value of the estimators ˆαp E( )

l F is bounded between zero and one.
However, it is clear that the statistical error will be largest for partially contributing plaquettes
with ˆ ∼αp E( ) 1/2

l F , whereas the uncertainty in ˆαp E( )
l F for plaquettes with energies completely

above or completely below the Fermi energy is expected to be much smaller. In order to have a
known and minimal statistical error in ˆαp E( )

l F , and thus in the Berry conductivity, it is highly
desirable that the numerical algorithm takes this effect into account and provides statistical
errors that depend on the actual value of the Fermi energy. The quantity ˆαp E( )

l F is the estimator
of the fixed, though unknown, parameter p of a binomial distribution  n p( , )R , corresponding to
the process of tossing nR times a biased coin. As is discussed in detail in appendix B, using the
normal approximation, and for a fixed number of runs nR and a desired value ϵ < 1, this allows
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one to derive a confidence interval α αp p[ , ]
l l,min ,max

for ˆαp E( )
l F , called the Wilson interval [47],

with modified boundary conditions. This means that with a probability ϵ−1 , the ‘true’ value
αp

l
lies in this interval. The key point is that the width of this interval depends on the actual

value of the estimator ˆαp
l
and is typically significantly smaller than the trivial upper bound of

one. After symmetrizing the interval by taking the maximum
Δ ˆ = ˆ − − ˆα α αp E p p p p( ) max ( , )

l F l lmin max
, each momentum space plaquette of the grid is

associated with a probability value Δˆ ± ˆp E p E( ) ( )
l F l F with a confidence of at least ϵ−1 .

Finally, we remark that whereas the discussed statistical method is conceptually simple,
intuitive and provides controllable error bars, it could be refined and combined with more
sophisticated techniques to evaluate the weighting factors (9) or, equivalently, to determine the
equal-energy contours of the bands for a given Fermi energy. In addition, an adaptative version
of the statistical algorithm could be put forward in which only the weighting factors of
plaquettes with large Berry curvature contributions are evaluated with high statistical accuracy.

As mentioned above, for even moderately fine grids, the FHS algorithm provides
essentially exact values for the Berry curvature contributions (see [44] and appendix A). Thus,
the statistical uncertainty of ˆαp

l
directly translates into an uncertainty in the Berry conductivity

contributions,

Δ⟶ ˆ ˜ ± ˆ ˜α α α α α α( )( ) ( ) ( )p E F p E F p E F . (10)
l F xy l l F xy l l F xy l, , ,

Finally, the estimated Berry conductivity is given by:

C∑σ̃ = ˜
α

α( ) ( )E
e

h
E , (11)F FBe

2

where

C ∑
π

˜ = ˜ ˆα
α α( ) ( )E

i
F p E

1
2

(12)
{ }

F xy l l F
k

,

l

with an error CΔ± ˜
α E( )F of:

C ∑Δ Δ˜ = ˆ ˜
α

α α( ) ( )E p E F( ) (13)
{ }

F l F xy l
k

,
2

l

with confidence of at least ϵ−1 . We remark that controllable error bars are particularly
important and valuable outside the insulating regime; i.e., where the Fermi energy cuts a
partially filled energy band. In this case the Berry conductivity is not quantized and can assume
continuous non-integer values.

3. Practical application of the algorithm

In this section, we apply the algorithm to different models. We first start with the Haldane
model, a two-band model that can realize both topological and trivial phases. We then go to the
Hofstadter model, a multi-band model characterized by a non-zero Chern number, and finish
with the BHZ model, a two-band realistic model realizing a quantum spin Hall effect in
condensed matter physics.
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3.1. The Haldane model

The model proposed by Haldane [40] is a tight-binding Hamiltonian of spinless fermions on a
honeycomb lattice, with dynamics governed by a nearest-neighbor (N.N.) real-valued hopping
term of amplitude J and an imaginary next-to-nearest neighbor (N.N.N.) hopping term J2 (see
figure 2(a)). In addition, the fermions are exposed to an onsite staggering potential β, which
induces a chemical potential difference between N.N. sites of the bi-partite hexagonal lattice (ϕ
and ψ sites). The model is exactly solvable and represents a paradigmatic model in the field of
topological phases of matter, as it hosts a quantum AHE phase even in the absence of an
external magnetic field. Recently, it has been proposed that the physics of this model could be
observed experimentally in a quantum simulation with cold atoms in optical lattices [34].

The Hamiltonian of the system is given by:

∑ ∑ ∑ν β= − + +† † †H J c c iJ c c s c c . (14)
i j

i j
i j

ij i j
i

i i i
,

2
,

Here, †ci and ci are fermionic creation and destruction operators, ν = ×d dsgn [( ) ]ij z1 2 and
= ±ϕ ψs 1, . The vectors d1 and d2 are oriented along the bonds of the hexagonal unit cell, as

shown in figure 2(a). The model can be readily solved by rewriting the Hamiltonian in terms of
two-site basis cells ϕ ψ( , ) (see, e.g., [48]) such that the hexagonal lattice becomes a triangular
lattice of ϕ ψ( , ) cells. In the Fourier space, the Hamiltonian is then given by [40]:

⎛
⎝⎜

⎞
⎠⎟∑ Ψ β

β
Ψ= ˆ − −

− +
ˆ*

∈

†
H

J f A

A J f
k

k k
k k

k( )
2 ( ) ( )

( ) 2 ( )
( ). (15)

B Zk . .

2

2

Here, Ψ̂ = ϕ ψ
† † †c ck k k( ) ( ( ), ( )), δ δ δ= · + · + ·A i i ik k k k( ) exp ( ) exp ( ) exp ( )1 2 3 is

expressed in terms of the vectors between nearest neighbors δ1, δ2 and δ3, and
= · + · + + ·f k a k a k a a k( ) sin [ ] sin [ ] sin [( ) ]1 3 1 2 is expressed in terms of the lattice

vectors a1 and a2 as shown in figure 2 and defined in appendix C.

Figure 2. Haldane model of spinless fermions on the honeycomb lattice. (a) Dynamics
is governed by a real-valued nearest-neighbor hopping and an imaginary-valued next-
to-nearest neighbor hopping amplitude, in combination with a staggering potential
which induces a chemical potential difference between ϕ- and ψ-lattice sites. The net
magnetic flux Φ through a unit cell is null. (b) The energy spectrum for =J J0.12 and
β = 0: the imaginary N.N.N. hopping opens a topologically non-trivial gap at the two
inequivalent Dirac cones.
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Diagonalization of the Hamiltonian readily yields the two-band energy spectrum:

β= ± + −±E A J fk k k( ) ( ) ( 2 ( )) , (16)2
2

2

which is shown in figure 2(b).
For β = =J 02 , the Hamiltonian corresponds to pure N.N. hopping of fermions, with the

characteristic spectrum exhibiting the two inequivalent Dirac cones [49, 50]. A non-zero
staggering potential β ≠ 0 induces an imbalance of the fermion density on the ϕ and ψ lattice
sites. The formation of a charge-density-wave phase is associated with the opening of a
topologically trivial insulating gap in the spectrum. On the other hand, a strong enough N.N.N.
hopping term J2 opens a topologically non-trivial energy gap that signals the transition of the
system into an AHE phase characterized by a non-zero Chern number. The size of the energy
gap is determined by the formula Δ β= | − |J2 3 3 2 , and for β| | < | |J3 3 2 the system is in the
topological phase.

We will now illustrate the working principle of our algorithm by applying it step by step—
as schematically summarized in figure 1(c)—to the Haldane model. To this end, we start by
fixing the Hamiltonian parameters to =J J0.12 , β = 0; i.e., deep in the topologically non-trivial
phase. Next, we discretize the Brillouin zone (step 1), where we use for numerical convenience
a rectangular-shaped B.Z. parametrization, which is equivalent to the standard hexagonal form
(see appendix C for details).

Then, we compute the field strength ˜ α
Fxy for each plaquette (step 2); the result is shown in

the right column of figure 3. We fix the number of random points (we choose nR = 20) (step 3)
and compute for each plaquette for nR randomly distributed momentum vectors αE k( )R (step 4).
Once the Fermi energy is fixed (step 5), here to a value of = −E J1.5F so that the Fermi energy
level cuts the lower band, we compute the estimators for the weights ˆαp E( )

l F according to
equation (9) (step 6). The values of the estimators ˆαp E( )

l F are shown in the left column of
figure 3. The central column of the figure displays the associated statistical uncertainties
Δ ˆαp E( )

l F , as determined in step 7 with the Wilson interval with modified boundaries, and
symmetrized (see appendix B). As expected and desired, the statistical errors associated with
plaquettes that correspond to regions that clearly lie above or below the Fermi energy are
minimal. In constrast, the plaquettes at energies around EF, which are cut by the Fermi surface,
have higher values. Note that even for very limited Monte Carlo statistics involving only
nB = 20 random points per momentum space plaquette, these uncertainty values are still much
smaller than the upper bound of one. In fact, higher uncertainties and error bars for plaquettes
around the Fermi surface reflect the physical fact that these are the plaquettes corresponding to
the regions in momentum space where small changes in the Fermi energy level can lead to
smaller or larger contributions of Berry curvature and thus to changes in the Berry conductivity.
The central and lower row of figure 3 show the weight estimators, uncertainties and Berry
curvature contributions for larger values of nB, illustrating how an increasingly finer grid of the
Brillouin zone leads to increased resolution and numerical precision.

Finally, the estimated weights ˆαp E( )
l F and the Berry curvature contributions ˜ α

Fxy l, are
combined to calculate the Berry conductivity (step 8) according to equations (11) and (12), with
an associated error bar (step 9) as given by equation (13). By applying the algorithm again for
varying values of the Fermi energy, the Berry conductivity can be obtained as a function of the
Fermi level energy. The obtained Berry conductivity is shown in figure 4(a): starting from low
conductivity values at the bottom of the lower energy band, the conductivity increases up to its
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plateau value of one (for Fermi energies lying in the topological insulating gap) before it
subsequently starts to fall off again once the Fermi energy reaches the upper band.

To test the behavior of the algorithm when the system undergoes a phase transition from
the topological AHE phase to the trivial insulating phase, we increase the Hamiltonian
parameter β to observe the competition of the N.N.N. hopping term with the staggering
potential. The subplots in figure 4 show the transition from the topologically non-trivial phase
characterized by a Chern number of one to the topologically trivial charge-density-wave phase
with a vanishing Chern number. The algorithm correctly captures the closing of the gap as well
as the jump of the conductivity plateau-value as the phase transition takes place. We emphasize
that the algorithm automatically takes into account the fact that, at the phase transition, the
Berry curvature is highly localized at the Dirac points and thus concentrated in only a few
plaquettes—a fact that the algorithm signals in the form of larger error bars of the Berry
conductivity in the parameter regime where the transition occurs.

Figure 3. Central ingredients for the numerical calculation of the Berry conductivity:
weight estimators p̂ E( )

l F (left column), with statistical errors (central column) and Berry
curvature contributions F̃xy (right column). The rows show the numerical results for
increasingly finer grids of the Brillouin zone: nB = 20 (upper), nB = 40 (central) and
nB = 80 (lower row). The results are obtained for the Haldane model for the Fermi
energy lying in the lower band at = −E J1.5F , and for Hamiltonian parameters

=J J0.12 and β = 0, and a sampling of nR = 20 random points per momentum space
plaquette.
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Finally, we apply the algorithm to the case where the system resides in the topological
phase with a small topological gap opened. Here, the algorithm allows one to clearly verify
numerically the E1/ F power law dependence of the Berry conductivity for Fermi energies close
to the gap. The σ = | |E e h J E( ) ( / ) 3 3 /Be F F

2
2 behavior is predicted by the linear approximation

of the spectrum around the Dirac points [43, 51–53]. The results are shown and discussed in
figure 5.

3.2. The Hofstadter model

Let us now apply the numerical algorithm to the Hofstadter model [41], which describes
spinless fermions on a square lattice subjected to a uniform magnetic field of magnetic flux
quanta per unit cell Φ. Only very recently, several groups have achieved the observation of the
characteristic physics, including the fractal spectrum known as Hofstadterʼs butterfly in
graphene superlattice systems [54–56]. This work complements ongoing experimental efforts to
realize theoretical ideas [57] on how to implement the fermionic Hofstadter Hamiltonian with
cold atoms in optical lattices [58–61].

The Hamiltonian in second-quantized form is given by:

∑= θ †H e c c , (17)
i j

i
i j

,

ij

Figure 4. Numerically obtained Berry conductivity σ̃ E( )FBe in the Haldane model as the
system undergoes the transition from the topologically nontrivial AHE phase (Chern
number C = 1 for Fermi energies lying in the gap) to the trivial band insulator induced
by the staggering potential (characterized by a Chern number C = 0 for Fermi energies
in the gap). The closure and reopening of the gap as the transition from the topological
to the trivial phase takes place is clearly reflected by the width of the conductance
plateau around EF = 0, following the analytical Δ β= | − |J2 3 3 2 dependence. The
results are obtained for a Brillouin zone grid parameter nB = 20 and nR = 20 random
points per momentum space plaquette, and statistical error bars correspond to a
confidence of 95% (ϵ = 0.05).

11

New J. Phys. 16 (2014) 073016 A Dauphin et al



where the sum is over N.N. sites (see figure 6), and the phase factor θiexp ( )ij corresponds to the
Peierls substitution, expressed in terms of the line integral over the vector potential along the
link between two neighboring sites i and j of the square lattice. If Φ = p q/ is a rational number,
the energy spectrum of the bulk, described in the Fourier space, splits into q sub-bands, each
one of them associated with a non-trivial integer-valued Chern number.

Due to its multi-band structure, the Hofstadter Hamiltonian can in general not be
diagonalized analytically and thus represents an interesting testbed for the numerical algorithm.
Figure 7 shows the numerical results for the Berry conductivity for different values of the flux
per plaquette (Φ = 1/3, 1/5 and 1/7). For Fermi energies lying in the energy gap between bulk
bands, the algorithm correctly reproduces the constant Berry conductivity, which corresponds to
the sum of the Chern numbers of completely filled bands. Once the Fermi energy falls into a

Figure 5. Berry conductivity in the Haldane model at Fermi energies in the vicinity of
the gap (Hamiltonian parameters are fixed at =J J0.0052 and β = 0 and for the
parameters nB = 450 and nR = 40). (a) Rapid increase of the conductivity to the plateau
value, as the Fermi energy approaches the band gap. (b) Double-logarithmic plot of the
conductivity, σ ν μ= | | +E h e E Jln ( ( )( / )) ln /Be F F

2 . A linear regression analysis of the
numerical data yields the scaling exponent ν = − 1.014 and μ = − 3.677 for a squared
correlation coefficient =R 0.9992 . These values coincide with the theoretically
predicted values of ν = − 1 and μ = = −J J(ln 3 3 / ) 3.6502 around 1%.

Figure 6. The Hofstadter model [41] describes non-interacting spinless fermions on a
square lattice under a magnetic flux Φ quanta per unit cell. For Φ = p q/ , a rational
number, the energy spectrum of the bulk splits into q sub-bands, as shown here for the
case Φ = 1/3. Each band is characterized by a non-vanishing Chern number C.
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bulk band, the Berry conductivity is no longer quantized. Whereas for Φ = 1/3 the Berry
conductivity interpolates monotonically between the gap plateau values, for Φ = 1/5 the
conductivity displays an interesting feature for Fermi energy values in the second band: instead
of showing monotonic growth, it first decreases to a minimum value before starting to increase
until it reaches the plateau dictated by the quantized value of the conductivity in the gap. The
same phenomenon occurs, even more markedly, in the third band of the spectrum for Φ = 1/7.
The small controlled statistical error bars of the numerical method ensure that the non-
monotonic signature in the Berry conductivity is indeed a physical feature rather than a
numerical artifact.

3.3. The BHZ model

In 2005, it was suggested that the quantum spin Hall effect (QSHE) could possibly be observed
in graphene [51, 62]. The QSHE, however, turned out to be impeded by too weak spin–orbit
coupling in this system. Shortly later, a realization of the QSHE in HgTe/CdTe nanowell
structures was proposed [16] and experimentally realized only one year later [17]: by varying
the thickness of the different layers of the heterostructure, the material can exhibit a trivial
insulating phase as well as a topological insulating phase, characterized by a 2 topological
invariant. The physics can be described by an effective Hamiltonian valid close to the Γ point,
derived by Bernevig, Hughes and Zhang (BHZ model) [16, 63]. The Hamiltonian is given by a
4 × 4 matrix in momentum space,

⎛
⎝⎜

⎞
⎠⎟

ϵ σ

=
−

= +

*H
h

h

h d

k

k

k k

( ) 0

0 ( )
,

( ) ( ) , (18)i
i

Figure 7. Numerical results for the Berry conductivity σ̃Be (blue points) as a function of
the Fermi energy for three values of the magnetic flux (Φ = 1/3, 1/5 and 1/7). The
Brillouin zone has been discretized by a grid of nB = 20 with nR = 20 random points per
momentum space plaquette. Statistical errors (red bars) correspond to a confidence of
95% (ϵ = 0.05).
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where  is the two-dimensional identity matrix, σi denote the Pauli matrices and:

ϵ = − +

= −

= − +

( )
( )

( )

C D k k

Ak Ak M

M M B k k

k

d k k

k

( ) ,

( ) , , ( ) ,

( ) . (19)

x y

x y

x y

2 2

2 2

The parameters A, B, C, D and M depend on material properties as well as the thickness of
the layers and can be computed numerically [16, 63].

The Hamiltonian decouples into 2 × 2 blocks, and the spin conductivity can be written as
the difference of the conductivity for each spin orientation, thus it makes sense to study the
conductivity of one of the orientations. Here, we apply our algorithm to the BHZ model with
parameters as calculated in [16]. Figure 8(a) shows the energy spectrum that exhibits a small
gap of 0.01 eV, which renders the computation of the Berry conductivity in the non-insulating
regime more demanding. Figures 8(b)–(d) show the numerical results for the Berry conductivity
for increasingly finer grids of the Brillouin zone.

Even for the roughest grid studied ( =n 40B ), the algorithm correctly captures the
qualitative behavior and the conductivity minimum value of −1 for the Fermi energy lying in
the shallow energy gap. However, as signaled by considerably large error bars, only a few
plaquettes contribute large values of Berry curvature to the conductivity. Thus, finer grids are
required to quantitatively correctly describe the conductivity behavior in the vicinity of the gap
(see figures 8(c) and (d) with nB = 160 and nB = 320). This effect illustrates the importance of a
high enough resolution, both numerically and in an experiment. As the algorithm qualitatively
captures the behavior even for rather coarse-grained grids, this can be helpful to predict
observations in the case of restricted experimental resolution, e.g., originating from the finite
size of optical lattices for cold atoms or finite temperature constraints in solid state experiments.
In appendix F, error bounds for the conductivity that take into account a finite grid resolution
are discussed in detail.

Finally, we remark that the BHZ model is an effective model valid close to the Γ point,
and thus the results of our analysis are also only valid in the vicinity of the energy gap. It is
possible and will be an interesting extension of the present work to apply the numerical method
to a more realistic, refined model, which incorporates more information about the band structure
of the system.

4. Conclusions and outlook

In this work we have proposed and constructed a numerical algorithm to calculate the Berry
conductivity in topological band insulators. The algorithm works for the insulating case where
the Fermi energy lies in the gap between two bulk bands; it also works for the situation in which
it lies within a band. The algorithm is gauge-invariant by construction, efficient and outputs the
Berry conductivity with known and controllable error bars. We have successfully applied the
algorithm to several paradigmatic models of topological quantum matter, including Haldaneʼs
model on the honeycomb lattice [40], the multi-band Hofstadter model [41] and the BHZ model
[16] that describes the 2D spin Hall effect observed in CdTe/HgTe/CdTe quantum well
compounds.
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In addition to its applicability to topological insulators, the numerical method to compute
the Berry conductivity for arbitrary values of the Fermi energy level can be applied to several
other important problems: it can be used to study new phases of matter such as topological
Fermi liquids [37, 64, 65] that arise in interacting systems of fermions that realize a TI phase or
an AHE phase. Mean field methods applied to these systems predict the existence of such
phases [48, 66, 67]. Here, the efficient and controllable numerical method for computing the
Berry conductivity provides the appropriate observable to map out the possible topological
phases of those systems with the desired accuracy [68–70].

Recent experiments, in which insulating phases [58, 61] have been quantum simulated
with cold atoms in optical lattices, provide another natural scenario where our new algorithm
can be applied. Complementary to condensed matter systems, these experimental setups offer
the possibility to study the intrinsic Berry conductivity in AHE systems under particularly clean
and controllable conditions. Here, our algorithm can provide a precise observable to reliably
and quantitatively distinguish symmetry protected topological phases from trivial phases. It also
can predict some interesting features within the energy band. In fact, several ways have been
proposed to measure characteristic signatures of topological quantum phases in systems of cold
atoms [71–75]. In particular, recently several ways to measure the Berry conductivity in cold
atom experiments using time of flight measurements have been proposed [20, 31, 34].

Figure 8. Application of the algorithm to the BHZ model [16, 63]. (a) Energy spectrum
of the BHZ model exhibiting a small energy gap. The parameters of the model entering
equation (19) are chosen as = −A 3.42 eV, = −B 16.9 eV, = −c 0.0263 eV,

=d 0.514 eV and = −M 0.00686 eV, as calculated in [16]. The plots (b), (c) and
(d) show the numerically obtained Berry conductivity σ̃ E( )FBe for increasingly larger
values of the momentum space resolution (grid sizes =nB 40, 160, 320). Error bars were
obtained for nR = 20 and correspond to a confidence value of 95%.
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An experimentally useful extension of our work would be to generalize our numerical
method to the case of three dimensional topological insulators under time-reversal symmetry
protecting conditions. Finally, an interesting question is how to generalize the controlled
numerical method to an open quantum system scenario, such that it can be applied to
topological insulators and topologically ordered systems coupled to an environment [76–80].
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Appendix A. The FHS algorithm and the lattice gauge theory formulation

The continuous Brillouin zone is discretized by a two-dimensional lattice grid of nB points in
each direction. For simplicity, we focus here on a rectangular grid, but the formalism can be
readily extended to any polygonal grid [46]. The plaquettes of the momentum space lattice are
then given by:

= + +i jk k s s , (A.1)l min k kx y

with

δ
δ

δ

δ

⩽ ⩽ −
=
=

= −

= −( )
( )

i j n

k

k k n

k k n

s u

s u

0 , 1,

,

,

,

. (A.2)
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k xmax xmin B

k ymax ymin B
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y

The lattice field strength ˜ α
F k( )xy l of band α on the grid is then defined in terms of the link

variable μU k( ) as:

⎡
⎣⎢

⎤
⎦⎥˜ = + +( )( )( )( ) ( ) ( )F U U U Uk k k 1 k 1 k: ln , (A.3)xy l x l y l k x l k k lx y y

where = 〈 | + 〉μ μU u uk k k 1( ) ( ) ( ) . If the admissibility condition π| ˜ | <F k( )xy l is satisfied
[44, 46], the lattice gauge theory corresponds to the continuous gauge theory [44, 46], and
one can write:

δ δ ≃ ˜( ) ( )F k k Fk k . (A.4)xy l x y xy l

Based on these Berry curvature contributions, the Chern number can be computed as:

∑
π

˜ = ˜ ( )C
i

F k
1

2
. (A.5)xy l

kl
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Appendix B. Choice and the computation of the statistical error

In this section, we present the concept and the details of a confidence interval (C.I.) to
characterize the statistical uncertainty of the estimated weights ˆαp

l
, as defined in equation (9).

For simplicity of the notation, we suppress the band index α and momentum index l in the
following.

The problem of estimating the weights corresponds to determining the unknown, though
fixed probability value p of a binomial distribution  n p( , )R , based on the outcome of nR trials.
The probability to observe k of the nR enquiries the value +1 is given by:

= =
!

! − !
−

( )
P X k

n

k n k
p p( ) (1 ) . (B.1)R

R

k k

The goal is to associate a C.I. of a width much smaller than one with the estimated value
p̂, such that the true value p lies with a probability ϵ−1 inside the C.I. There are several ways
to define the C.I., and we will in the following outline the advantages and inconveniences of
some of them to motivate the necessity to adopt a simple and appropriate one that we use in
our algorithm. To characterize and compare the quality of different conventions for the C.I, it
is convenient to introduce the coverage probability: it corresponds to the effective probability
to be inside the C.I. and can be compared to the expected probability ϵ−1 . As a guiding
principle, a ‘good’ C.I. is an interval with ϵ≃ −p 1

cov
. On the contrary, for ϵ< −p 1

cov
, the

C.I. is ‘bad’ as the statistical ‘guaranteeing functionality’ of the interval fails. The other case
ϵ> −p 1

cov
is not dramatic in our context, as this implies that the true value of the estimated

quantity p actually lies in the C.I. with a probability even higher than the targeted value of
ϵ−1 .
The construction of the C.I. is based on the central limit theorem, which can be used to

prove the convergence of the binomial distribution to a normal distribution  , in our case:

ˆ −
−

→ → ∞n
p p

p p
n

(1 )
(0, 1) when . (B.2)R

l
R

The central limit theorem and the definition of the C.I. of a normal distribution with an
expected probability ϵ−1 permits us to write the C.I. of p̂

l
as a self-consistent equation in

terms of p:

= ˆ ± −
ϵp p z

p p

n
(1 )

, (B.3)
l

R
2

where ϵz is the quantile function of the normal distribution [81].
A first way to define a C.I. is by maximizing the second term of the sum, yielding:

= ˆ ± αp p
z

n2
(B.4)

l
R

2

for =p 1/2. This relation highlights the typical n1/ R dependence of the statistical error and
can be used to provide a rough estimate of the size of the C.I. in terms of nR. However, as the
length of the interval no longer depends on the estimated value p̂

l
itself, it does not satisfy our

requirement. It will have a coverage probability ϵ> −p 1
cov

and would output error bars that
overestimate the actual uncertainty of the observable of interest.
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Another commonly used C.I. is constructed using the approximation
− ≃ ˆ − ˆp p p p(1 ) (1 )

l l
in equation (B.3), thereby replacing the unknown ‘true’ value by the

estimator value, so that:

= ˆ ±
ˆ − ˆ

ϵ

( )
p p z

p p

n

1
. (B.5)

l

l l

R
2

This C.I. is known as the Wald interval [47]. Despite its simplicity, this convention suffers
from several problems: for ˆ ≃p 0

l
or ˆ ≃p 1

l
, the Wald interval shrinks to zero, implying a bad

coverage probability for p-values close to one or zero. As discussed by Brown et al [47], a
series of criteria has been used in the literature to test the region of validity of this C.I. However,
these criteria can be misleading and do not always characterize correctly the C.I.

In figure B.1(a) we illustrate this problem for a fixed value of nR = 40 and by computing
the coverage probability of the C.I. in terms of the value of p on 10 000 samples. One notices at
first glance the tendency of the curve to lie below the expected value of ϵ−1 . Although the C.I.
works rather well for values of p close to p = 0.5, it captures only poorly the situation at values
close to the boundaries. Finally, the curve has fast and significant oscillating behavior, which
gives rise to the phenomenon of so-called ‘lucky’/‘unlucky’ numbers when increasing slightly
the probability p, the coverage probability jumps from a good p

cov
to a poor p

cov
value, as is the

case, for instance, around p = 0.8 in the example shown. The couple p n( , )R defines the lucky/
unlucky numbers. In figure B.2(a) we fix the value p = 0.25 and vary the value of nR. Here one
also observes significant fluctuations that are only stabilized at larger values of nR. This effect
becomes even more striking at small p, as illustrated in figure B.2(c), where a fixed value of
p = 0.007 has been chosen: under an increase of nR, the C.I. seems to converge to a favorable
value of p

cov
until reaching nR = 423, where p

cov
suddenly drops from 0.94 to 0.78. We thus

exclude the Wald interval as a candidate to construct the C.I. for the ˆαp
l
estimators in our

algorithm.
Most of the mentioned problems can be avoided if the approximation
− ≃ ˆ − ˆp p p p(1 ) (1 )

l l
is not applied in equation (B.3). Instead, one can exactly solve

equation (B.3), which is a quadratic equation for p̂. This yields the so-called Wilson interval
[47, 82]:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
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⎞
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2

2
2

2

2
2

2

As illustrated in figure B.1(b), the Wilson interval is much more stable, and the coverage
probability is oscillating around the value ϵ−1 . Figure B.2(b) shows that the Wilson interval
reaches rapidly and in a stable way the expected value ϵ−1 . The only problem still to be cured
is at the boundaries, at p-values around zero or one, where the coverage probability drops.
Figure B.2(d) illustrates the convergence at small p, here fixed to p = 0.007, and indicates that
the effect of lucky/unlucky numbers is much less important than for the Wald interval. Brown
et al [47] propose to replace the lower (upper) boundary of the C.I., obtained by the normal
approximation by a lower (upper) boundary obtained from a Poisson approximation for small
(big) values of p̂. This indeed stabilizes the behavior of the C.I. even close to the boundaries,
but complicates the expression of the C.I. Here, we propose a simpler patch, which has the same
desired effect: we use the following replacement:
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Figure B.1. Plot of the coverage probability according to the Wald interval (a) and the
Wilson interval (b) of a binomial distribution  p(40, ) with an expected probability of

ϵ− =1 0.95. The calculations have been done using 10 000 samples.

Figure B.2. Plots (a) and (b) show the coverage probability according to the Wald and
to the Wilson intervals of a binomial distribution  n( , 0.25) with a probability

ϵ− =1 0.95, where ⩽ ⩽n20 200. Plots (c) and (d) show the coverage probability
according to the Wald and to the Wilson intervals of a binomial distribution  n( , 0.007)
with a probability ϵ− =1 0.95, where ⩽ ⩽n10 1000. The calculations have been
done using 10 000 samples.
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= ˆ = =
= ˆ = = − −

p p x n x

p p x n x n n n

0 if , 0, 1, 2,

1 if , , 1, 2, (B.7)
l R

l R R R R

min

max

including x = 3 and = −x n 3R if >n 40R . Finally, merely for convenience to obtain symmetric
error bars, we symmetrize the C.I. around p̂ by choosing a width that corresponds to twice the
value of − ˆ ˆ −p p p pmax{ , }

max min
. While keeping the C.I. narrow, this only leads to a modest

over-estimation of the actual uncertainty of the estimator.
The C.I. interval defined in this form has a simple analytical form in combination with a

good coverage probability, even for small nR [47]. We will use this construction of the C.I. in
the Monte Carlo sampling part of the algorithm and refer to it as ‘Wilson interval with modified
boundaries’ in the main text.

Appendix C. Properties of the honeycomb lattice

The reciprocal vectors are π π=b (2 /3, 2 / 3 )1 and π π= −b ( 2 /3, 2 / 3 )2 . The equivalence
between the hexagonal Brillouin zone and the rectangular area used in the computation is
shown in figure C.1: the lower left triangle can be translated along b1 and the lower right
triangle can be translated along the b2.

Appendix D. Effect of the choice of the resolution and the choice of the number of
random points

In this section, we illustrate the importance of an appropriate momentum space resolution,
parametrized by the discretization number nB. Figure C.2 presents a zoom of figure 4(c) of the
main text, showing the numerically estimated Berry curvature for different grids nB. One finds
that all graphs have the same behavior until reaching a value around = −E J0.33F . There, the
behavior of the estimator of the Berry curvature becomes jerky. This is a characteristic which
shows up when a few momentum-space plaquettes have an important Berry curvature
contribution. The error bars signal this effect. The situation improves for increasing values of
nB: the curves converge to one sharp curve, showing that the main contribution of the Berry
curvature stems from states with an energy close to zero, and the error bars decrease
significantly.

Another way to reduce the size of the error bars is to increase the value of nR, the number
of random points used to compute p̂

l
in each plaquette. Figure D.1 displays the estimated Berry

conductivity for a fixed value nB = 20 and for the two values nR = 20 and nR = 160. As expected,
the curve for nR = 160 is much more stable than the curve obtained for nR = 20: we see here a
better interpolation in terms of the Fermi energy at this resolution. We emphasize the fact that
the curve corresponding to nR = 160 is contained completely in the region spanned by the error
bars of the nR = 20. This is an important point of the chosen construction of the confidence
interval, as described in appendix B.

Appendix E. Importance of the choice of the error bars

In this section, we compare the Wilson interval with modified boundaries with the C.I. defined
in equation (B.4) by examining the final error interval obtained in the Haldane model using both
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methods. We work here with =J J0.12 , β = J0.5 such that the Berry curvature is really sharp
and localized. Figure E.1 shows the results for both types of error interval with the parameters
nB = 20, nR = 100. The error interval as obtained by using the Wilson interval (see appendix B)
captures correctly the fact that the main contribution to the Berry curvature is strongly localized
in momentum space. This gives rise to an increased statistical error in the energy region, in
which the Fermi energy crosses plaquettes with a large contribution to the Berry curvature. The
error obtained with the other C.I., presented in figure E.1(b), is constant, independent of the
value of the Fermi energy, and is thus not indicating the region where the Fermi energy crosses
plaquettes with a large contribution to the Berry curvature. This point illustrates the choice of
the Wilson interval to construct the main algorithm.

Figure C.1. The hexagonal-shaped Brillouin zone is equivalent to a rectangle, obtained
by a translation of two triangles (dashed line) in the direction of the basis vectors of the
reciprocal lattice b1 and b2.

Figure C.2. Plot of the numerically estimated Berry conductivity σ̃Be with error bars for
four different values of the discretization number of the momentum space grid, =nB 20,
40, 80 and 160, for a system with parameters =J J0.12 , β = J0.5 and nR = 20. The
inset shows a zoom into the region − ⩽ ⩽J E0.3 0F .
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Appendix F. Error bound due to the grid resolution

The algorithm introduced in this paper allows one to compute the Berry conductivity with
controllable statistical error bars for a given grid resolution of the discretization of the Brillouin
zone.

The choice of this grid can be dictated either by physical constraints of the problem, such
as the finite size of the considered lattices in real space (e.g., in experiments with cold atoms in
optical lattices), or by limited numerical resources. In any case, it is important and highly
desirable to be able to characterize the error due to the grid resolution. More precisely, for a
given grid, the aim is to provide an upper bound on how much the Berry conductivity might at
most change if the grid chosen were even finer. In this section, we address this problem and
construct a tight error bound in terms of the grid resolution. In particular, this bound will require
no inputs except the Berry curvature contributions of the small momentum space plaquettes,
which in any case need to be determined (see step 2 in figure 1(c)) in the course of computing
the Berry conductivity by our algorithm.

We start with a discretization of the B.Z. into L × L plaquettes such that the sum ∑ ˜
= F

i

L
i11

2

1

over all the plaquettes is equal to the Chern number. (In this section we are omitting the band
index for notational simplicity.) Consider then finer and finer grids, where the nth level grid
contains ×− −c L c Ln n1 1 plaquettes at each iteration, the previous plaquette is split into c2 new
small plaquettes as illustrated in figure F.1, which presents two successive grid levels with
c = 2.

The Berry conductivity at the iteration n is written as:

C ∑∑ ∑˜ = ⋯ ˜
= = =

… …F p , (F.1)
n

i

L

i

c

i

c

i i i i

( )

1 1 1n

n n

1

2

2

2 2

1 1

Figure D.1. Numerically estimated Berry conductivity σ̃Be with error bars for two values
of the number of random points nR = 20 and 160, for a system with =J J0.12 , β = J0.5
and nB = 20. As expected, the computation with nR = 160 is much more precise,
resulting in significantly smaller error bars. Note that, as desired, the nR = 160 curve is
entirely comprised in the region spanned by the error bars of the computation with
nR = 20.
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where

ϵ˜ = ˜ +… … …− ( )F
c

F
1

1 (F.2)i i i i i i2n n n1 1 1 1

and

∑ =
=

… … −c
p p

1
. (F.3)

i

c

i i i i2
1n

n n

2

1 1 1

The parameters ϵ …i in1
quantify the non-homogeneous contribution of the Berry curvature of

the subplaquette in terms of the Berry curvature of the plaquette of the previous iteration.
The error bound at the iteration n,

C C∑Δ Δ˜ = ˜
∞

=

∞
+

: , (F.4)
n

m

n m( )

0

( )

is defined as the sum over all the relative errors C C CΔ ˜ = ˜ − ˜+ + + +n m n m n m( ) ( ) ( 1)
between the

iterations +n m and + +n m 1.
To compute the upper bound of this quantity, we should make an assumption about the

smoothness of the Berry curvature; we expect that when the coarse graining is sufficiently fine
after n0 iterations, the Berry curvature becomes smoother at each iteration. Formally, we assume
that there exist an n0 and a parameter < <q0 1 such that for >n n0:

ϵ ϵ ϵ= ⩽
⋯ … ⋯ …

−
−

q: max max . (F.5)n

i i
i i

i i
i i

( )

n
n

n
n

1
1

1 1
1 1

Note that it is essential to numerically verify for a given model and set of Hamiltonian
parameters that this natural assumption is indeed fulfilled, and to determine from which n0 on
(see also examples below).

Using the last inequality, it is straightforward to derive an upper bound of the Berry
conductivity +C n( 1) and of the relative error ΔC n( ) in terms of C n( ):

Figure E.1. Plot of the conductivity for a system with =J J0.12 , β = J0.5 and for
nB = 20, nR = 100. The error bars are computed using the symmetrized Wilson interval
with modified boundaries (a) and the C.I. (b) defined in equation (B.4). The sensitivity
of the Wilson interval to the value of the Fermi energy EFF is clearly visible.
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C Cϵ˜ ⩽ + ˜+ ( )q1 , (F.6)
n n n( 1) ( ) ( )

C CΔ ˜ ⩽ ˜q . (F.7)
n n( ) ( )

By iterating, one finds the bound of CΔ ˜ +n m( )
in terms of C̃

n( )
:

C CΔ ϵ ϵ˜ ⩽ + ˜+ + ( )q q1 . (F.8)
n m m n n m n( ) 1 ( ) ( ) ( )

The total error CΔ ˜
∞
n( )

is bounded by a geometric series which, when ϵ+ <q q(1 ) 1n( ) ,
converges and can be bounded by the value:

C CΔ
ϵ

ϵ˜ ⩽
− +

˜
∞ ( )

q

q q1 1
. (F.9)

n

n

n n( )

( )

( ) ( )

As an illustration, we apply this formula to the Haldane model in the case of
β= =J J J/ 0.5, / 02 . In this case, the Berry curvature is smooth, and the FHS algorithm already

converges for nB = 10. We thus choose = =L n 10B for the first iteration. Figure F.2(a) shows
the Berry curvature after two iterations with c = 2 (i.e., nB = 40). Following the exposed line of
argument, we first verify numerically that we are in a convergence regime by testing the
inequality (F.5) at each iteration. Figures F.2(b) and (c) present the maximum of the ϵ …i in1

for
two successive iterations in terms of the plaquette of the grid nB = 40. As expected, we find that
the contribution of the ϵ at the next iteration level is getting smaller. In table 1, we present more
quantitative results for the different iterations for the ϵ n

max
( ) at each iteration and the value of

ϵ ϵ= +q /
n

n n
max
( 1)

max
( ) . As can be seen from the table, the value of ϵ ϵ= +q /

n
n n

max
( 1)

max
( ) is inferior to 1, and

by choosing q = 0.6, we ensure that relation (F.5) is satisfied.

Figure F.1. The figure shows two grid levels n and +n 1 for the Haldane model with
parameter β= =J J J/ 0.5, / 02 . The plaquette at the iteration n is now described by four
plaquettes at the iteration +n 1. The ϵ … +i in1 1

characterize the difference from the
homogeneous case. This is illustrated for one plaquette close to the Dirac cone.
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Figure F.2.Determining the error bars due to the grid resolution. When the convergence
regime is achieved, the Berry curvature ˜

…Fi in1
becomes more homogeneous: each peak of

the Berry curvature in (a) is not longer described by one plaquette. Furthermore, when
we increase the grid size, the maximum of the deviation from the homogeneous case
ϵ …i in1

for each plaquette is getting smaller at each iteration, as presented in the (b) and (c)
Since the error due to the grid comes from the plaquettes with highest Berry curvature,
we set a threshold of × | ˜ |−

… …F10 maxi i i i
2

n n1 1
in (b) and (c) and in the numerical

computations. This information can be used to determine a maximal error interval for
each grid resolution in the convergence regime. All these error bounds contain the Berry
conductivity computed for nB = 320 (black dots).

Table 1. The convergence of the Haldane model is studied for the parameter β =J/ 0
and two values of the parameter J2: =J J/ 0.52 and =J J/ 0.012 . When the regime of
convergence is reached, the parameter ϵn

max is decreasing rapidly and the ratio
ϵ ϵ= +q /

n
n n

max
( 1)

max
( ) is converging to a constant value.

=J J/ 0.52 =J J/ 0.012

= × −n 10 2B
n 1 ϵ n

max
( ) qn ϵ n

max
( ) qn

n = 2 0.197 0.419 0.693 0.847
n = 3 0.087 0.471 0.588 0.713
n = 4 0.041 0.496 0.419 0.516
n = 5 0.020 0.496 0.216 0.472
n = 6 0.010 0.497 0.102 0.489
n = 7 0.005 0.499 0.049 0.491
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Next, the numerical factor of the error is obtained using equation (F.9). Figure F.2 displays
the Berry conductivity for three successive iterations nB = 80, 160 and 320 with error bounds.
Here the parameter nR = 200 is chosen such that the statistical error is negligible. Otherwise, one
should sum the statistical error to the error due to the grid. The error bounds are becoming
smaller at each iteration by a factor 2, and the conductivity converges rapidly with an error
already of C0.03 )n( for nB = 160 and C0.015 n( ) at nB = 320.

We have finally applied the algorithm on a more challenging case of the Haldane model
with the parameters β= =J J J/ 0.01, / 02 . In this parameter regime, the band structure exhibits
only a small energy gap between the two bands, and the Berry curvature is very peaked at the
Dirac cones. However, the FHS algorithm is already working at nB = 10. As can be inferred
from the right column of table 1, the regime of convergence is only reached for a finer choice of
the grid than in the case =J J/ 0.502 , with a slower decrease of ϵ n

max at the beginning. However,
at n = 4 the system enters a convergence regime; and also in this case, one can associate with the
Berry conductivity upper error bounds due to the fine discretization of the Brillouin zone.
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