3,307 research outputs found
Analysing the Transverse Structure of the Relativistic Jets of AGN
This paper describes a method of fitting total intensity and polarization profiles in VLBI images of astrophysical jets to profiles predicted by a theoretical model. As an example, the method is used to fit profiles of the jet in the Active Galactic Nucleus Mrk501 with profiles predicted by a model in which a cylindrical jet of synchrotron plasma is threaded by a magnetic field with helical and disordered components. This fitting yields model Stokes Q profiles that agree with the observed profiles to within the 1-2 \sigma uncertainties; the I model and observed profiles are overall not in such good agreement, with the model I profiles being generally more symmetrical than the observed profiles. Consistent fitting results are obtained for profiles derived from 6cm VLBI images at two distances from the core, and also for profiles obtained for different wavelengths at a single location in the VLBI jet. The most striking success of the model is its ability to reproduce the spine-sheath polarization structure observed across the jet. Using the derived viewing angle in the jet rest frame, \delta' approximately 83 degrees, together with a superluminal speed reported in the literature, \beta apparent = 3.3, yields a solution for the viewing angle and velocity of the jet in the observer's frame \delta degrees and \beta approximately 0.96. Although these results for Mrk501 must be considered tentative, the combined analysis of polarization profiles and apparent component speeds holds promise as a means of further elucidating the magnetic field structures and other parameters of parsec-scale AGN jets
The IRAS Revised Bright Galaxy Sample (RBGS)
IRAS flux densities, redshifts, and infrared luminosities are reported for
all sources identified in the IRAS Revised Bright Galaxy Sample (RBGS), a
complete flux-limited survey of all extragalactic objects with total 60 micron
flux density greater than 5.24 Jy, covering the entire sky surveyed by IRAS at
Galactic latitude |b| > 5 degrees. The RBGS includes 629 objects, with a median
(mean) sample redshift of 0.0082 (0.0126) and a maximum redshift of 0.0876. The
RBGS supersedes the previous two-part IRAS Bright Galaxy Samples, which were
compiled before the final ("Pass 3") calibration of the IRAS Level 1 Archive in
May 1990. The RBGS also makes use of more accurate and consistent automated
methods to measure the flux of objects with extended emission. Basic properties
of the RBGS sources are summarized, including estimated total infrared
luminosities, as well as updates to cross-identifications with sources from
optical galaxy catalogs established using the NASA/IPAC Extragalactic Database
(NED). In addition, an atlas of images from the Digitized Sky Survey with
overlays of the IRAS position uncertainty ellipse and annotated scale bars is
provided for ease in visualizing the optical morphology in context with the
angular and metric size of each object. The revised bolometric infrared
luminosity function, phi(L_ir), for infrared bright galaxies in the local
Universe remains best fit by a double power law, phi(L_ir) ~ L_ir^alpha, with
alpha = -0.6 (+/- 0.1), and alpha = -2.2 (+/- 0.1) below and above the
"characteristic" infrared luminosity L_ir ~ 10^{10.5} L_solar, respectively.
(Abridged)Comment: Accepted for publication in the Astronomical Journal. Contains 50
pages, 7 tables, 16 figures. Due to astro-ph space limits, only 1 of 26 pages
of Figure 1, and 1 of 11 pages of Table 7, are included; full resolution
Postscript files are available at
http://nedwww.ipac.caltech.edu/level5/March03/IRAS_RBGS/Figures/ .
Replacement: Corrected insertion of Fig. 15 (MethodCodes.ps) in LaTe
Jet Acceleration by Tangled Magnetic Fields
We explore the possibility that extragalactic radio jets might be accelerated
by highly disorganized magnetic fields that are strong enough to dominate the
dynamics until the terminal Lorentz factor is reached. Following the
twin-exhaust model by Blandford & Rees (1974), the collimation under this
scenario is provided by the stratified thermal pressure from an external
medium. The acceleration efficiency then depends on the pressure gradient of
that medium. In order for this mechanism to work there must be continuous
tangling of the magnetic field, changing the magnetic equation of state away
from pure flux freezing (otherwise conversion of Poynting flux to kinetic
energy flux is suppressed). This is a complementary approach to models in which
the plasma is accelerated by large scale ordered fields. We include a simple
prescription for magnetic dissipation, which leads to tradeoffs among
conversion of magnetic energy into bulk kinetic energy, random particle energy,
and radiation. We present analytic dynamical solutions of such jets, assess the
effects of radiation drag, and comment on observational issues, such as the
predicted polarization and synchrotron brightness. Finally, we try to make the
connection to observed radio galaxies and gamma-ray bursts.Comment: 15 pages, 10 figures, accepted for publication in Ap
The XMM-Newton Detection of Diffuse Inverse Compton X-rays from Lobes of the FR-II Radio Galaxy 3C98
The XMM-Newton observation of the nearby FR-II radio galaxy 3C 98 is
reported. In two exposures on the target, faint diffuse X-ray emission
associated with the radio lobes was significantly detected, together with a
bright X-ray active nucleus, of which the 2 -- 10 keV intrinsic luminosity is
(4 -- 8) \times 10^{42} erg s-1. The EPIC spectra of the northern and southern
lobes are reproduced by a single power law model modified by the Galactic
absorption, with a photon index of 2.2-0.5+0.6 and 1.7-0.6+0.7 respectively.
These indices are consistent with that of the radio synchrotron spectrum, 1.73
+- 0.01 The luminosity of the northern and southern lobes are measured to be
8.3-2.6+3.3 \times 10^{40} erg s-1 and 9.2-4.3+5.7 \times 10^{40} erg s-1,
respectively, in the 0.7 -- 7 keV range. The diffuse X-ray emission is
interpreted as an inverse-Compton emission, produced when the
synchrotron-emitting energetic electrons in the lobes scatter off the cosmic
microwave background photons. The magnetic field in the lobes is calculated to
be about 1.7 \mu G, which is about 2.5 times lower than the value estimated
under the minimum energy condition. The energy density of the electrons is
inferred to exceed that in the magnetic fields by a factor of 40 -- 50.Comment: 23 pages, 7 figures. Accepted for publication in the Astrophysical
Journa
A reflective process memory in decision making
SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024000 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Direct Distance Measurements to Superluminal Radio Sources
We present a new technique for directly measuring the distances to
superluminal radio sources. By comparing the observed proper motions of
components in a parsec scale radio jet to their measured Doppler factors, we
can deduce the distance to the radio source independent of the standard rungs
in the cosmological distance ladder. This technique requires that the jet angle
to the line of sight and the ratio of pattern to flow velocities are
sufficiently constrained. We evaluate a number of possibilities for
constraining these parameters and demonstrate the technique on a well defined
component in the parsec scale jet of the quasar 3C279 (z = 0.536). We find an
angular size distance to 3C279 of greater than 1.8 (+0.5,-0.3) n^{1/8} Gpc,
where n is the ratio of the energy density in the magnetic field to the energy
density in the radiating particles in that jet component. For an Einstein-de
Sitter Universe, this measurement would constrain the Hubble constant to be H <
65 n^{-1/8} km/s/Mpc at the two sigma level. Similar measurements on higher
redshift sources may help discriminate between cosmological models.Comment: 18 pages, 8 figures, to be published in The Astrophysical Journa
Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018
As part of our study of the magnetic fields of AGN we have recently observed
a large sample of blazars with the Very Long Baseline Array. Here we report the
discovery of a striking two-component jet in the source 1055+018, consisting of
an inner spine with a transverse magnetic field, and a fragmentary but distinct
boundary layer with a longitudinal magnetic field. The polarization
distribution in the spine strongly supports shocked-jet models while that in
the boundary layer suggests interaction with the surrounding medium. This
behavior suggests a new way to understand the differing polarization properties
of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518,
1999 June 2
On the informational content of wage offers
This article investigates signaling and screening roles of wage offers in a single-play matching model with two-sided unobservable characteristics. It generates the following predictions as matching equilibrium outcomes: (i) âgoodâ jobs offer premia if âhigh-qualityâ worker population is large; (ii) âbadâ jobs pay compensating differentials if the proportion of âgoodâ jobs to âlow-qualityâ workers is large; (iii) all firms may offer a pooling wage in markets dominated by âhigh-qualityâ workers and firms; or (iv) Greshamâs Law prevails: âgoodâ types withdraw if âbadâ types dominate the population. The screening/signaling motive thus has the potential of explaining a variety of wage patterns
Jet Collimation by Small-Scale Magnetic Fields
A popular model for jet collimation is associated with the presence of a
large-scale and predominantly toroidal magnetic field originating from the
central engine (a star, a black hole, or an accretion disk). Besides the
problem of how such a large-scale magnetic field is generated, in this model
the jet suffers from the fatal long-wave mode kink magnetohydrodynamic
instability. In this paper we explore an alternative model: jet collimation by
small-scale magnetic fields. These magnetic fields are assumed to be local,
chaotic, tangled, but are dominated by toroidal components. Just as in the case
of a large-scale toroidal magnetic field, we show that the ``hoop stress'' of
the tangled toroidal magnetic fields exerts an inward force which confines and
collimates the jet. The magnetic ``hoop stress'' is balanced either by the gas
pressure of the jet, or by the centrifugal force if the jet is spinning. Since
the length-scale of the magnetic field is small (< the cross-sectional radius
of the jet << the length of the jet), in this model the jet does not suffer
from the long-wave mode kink instability. Many other problems associated with
the large-scale magnetic field are also eliminated or alleviated for
small-scale magnetic fields. Though it remains an open question how to generate
and maintain the required small-scale magnetic fields in a jet, the scenario of
jet collimation by small-scale magnetic fields is favored by the current study
on disk dynamo which indicates that small-scale magnetic fields are much easier
to generate than large-scale magnetic fields.Comment: 14 pages, no figur
- âŠ