We present a new technique for directly measuring the distances to
superluminal radio sources. By comparing the observed proper motions of
components in a parsec scale radio jet to their measured Doppler factors, we
can deduce the distance to the radio source independent of the standard rungs
in the cosmological distance ladder. This technique requires that the jet angle
to the line of sight and the ratio of pattern to flow velocities are
sufficiently constrained. We evaluate a number of possibilities for
constraining these parameters and demonstrate the technique on a well defined
component in the parsec scale jet of the quasar 3C279 (z = 0.536). We find an
angular size distance to 3C279 of greater than 1.8 (+0.5,-0.3) n^{1/8} Gpc,
where n is the ratio of the energy density in the magnetic field to the energy
density in the radiating particles in that jet component. For an Einstein-de
Sitter Universe, this measurement would constrain the Hubble constant to be H <
65 n^{-1/8} km/s/Mpc at the two sigma level. Similar measurements on higher
redshift sources may help discriminate between cosmological models.Comment: 18 pages, 8 figures, to be published in The Astrophysical Journa