118 research outputs found

    Magnetocrystalline anisotropy and magnetization reversal in Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    Get PDF
    Journal ArticleWe report the observation of ferromagnetic resonance (FMR) and the determination of the magnetocrystalline anisotropy in (100)-oriented single-crystalline thin film samples of Ga1−xMnxP with x=0.042. The contributions to the magnetic anisotropy were determined by measuring the angular and the temperature dependencies of the FMR resonance fields and by superconducting quantum interference device magnetometry. The largest contribution to the anisotropy is a uniaxial component perpendicular to the film plane; however, a negative contribution from cubic anisotropy is also found. Additional in-plane uniaxial components are observed at low temperatures, which lift the degeneracy between the in-plane [011] and [011¯] directions as well as between the in-plane [010] and [001] directions. Near T=5 K, the easy magnetization axis is close to the in-plane [011¯] direction. All anisotropy parameters decrease with increasing temperature and disappear above the Curie temperature TC. A consistent picture of the magnetic anisotropy of ferromagnetic Ga1−xMnxP emerges from the FMR and magnetometry data. The latter can be successfully modeled when both coherent magnetization rotation and magnetic domain nucleation are considered

    Spin-glass-like behavior of Ge:Mn

    Full text link
    We present a detailed study of the magnetic properties of low-temperature-molecular-beam-epitaxy grown Ge:Mn dilute magnetic semiconductor films. We find strong indications for a frozen state of Ge_{1-x}Mn_{x}, with freezing temperatures of T_f=12K and T_f=15K for samples with x=0.04 and x=0.2, respectively, determined from the difference between field-cooled and zero-field-cooled magnetization. For Ge_{0.96}Mn_{0.04}, ac susceptibility measurements show a peak around T_f, with the peak position T'_f shifting as a function of the driving frequency f by Delta T_f' / [T_f' Delta log f] ~ 0.06, whereas for sample Ge_{0.8}Mn_{0.2} a more complicated behavior is observed. Furthermore, both samples exhibit relaxation effects of the magnetization after switching the magnitude of the external magnetic field below T_f which are in qualitative agreement with the field- and zero-field-cooled magnetization measurements. These findings consistently show that Ge:Mn exhibits a frozen magnetic state at low temperatures and that it is not a conventional ferromagnet.Comment: Revised version contains extended interpretation of experimental dat

    Compensation-dependent in-plane magnetization reversal processes in Ga1-xMnxP1-ySy

    Full text link
    We report the effect of dilute alloying of the anion sublattice with S on the in-plane uniaxial magnetic anisotropy and magnetization reversal process in Ga1-xMnxP as measured by both ferromagnetic resonance (FMR) and superconducting quantum interference device (SQUID) magnetometry. At T=5K, raising the S concentration increases the uniaxial magnetic anisotropy between in-plane directions while decreasing the magnitude of the (negative) cubic anisotropy field. Simulation of the SQUID magnetometry indicates that the energy required for the nucleation and growth of domain walls decreases with increasing y. These combined effects have a marked influence on the shape of the field-dependent magnetization curves; while the direction remains the easy axis in the plane of the film, the field dependence of the magnetization develops double hysteresis loops in the [011] direction as the S concentration increases similar to those observed for perpendicular magnetization reversal in lightly doped Ga1-xMnxAs. The incidence of double hysteresis loops is explained with a simple model whereby magnetization reversal occurs by a combination of coherent spin rotation and noncoherent spin switching, which is consistent with both FMR and magnetometry experiments. The evolution of magnetic properties with S concentration is attributed to compensation of Mn acceptors by S donors, which results in a lowering of the concentration of holes that mediate ferromagnetism.Comment: 37 pages, 9 figures, 3 table

    Potassium Starvation in Yeast: Mechanisms of Homeostasis Revealed by Mathematical Modeling

    Get PDF
    The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis

    Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions

    Get PDF
    GeMn/Ge epitaxial 'superlattices' grown by molecular beam epitaxy with different growth conditions have been systematically investigated by transmission electron microscopy. It is revealed that periodic arrays of GeMn nanodots can be formed on Ge and GaAs substrates at low temperature (approximately 70°C) due to the matched lattice constants of Ge (5.656 Å) and GaAs (5.653 Å), while a periodic Ge/GeMn superlattice grown on Si showed disordered GeMn nanodots with a large amount of stacking faults, which can be explained by the fact that Ge and Si have a large lattice mismatch. Moreover, by varying growth conditions, the GeMn/Ge superlattices can be manipulated from having disordered GeMn nanodots to ordered coherent nanodots and then to ordered nanocolumns
    corecore