158 research outputs found

    Functional loss of IKBE leads to NF-KB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-?B is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-?B pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes I?B?, a negative regulator of NF-?B in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced I?B? protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that I?B? loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-?B deregulation during lymphomagenesis. <br/

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors.

    Get PDF
    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s

    Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis

    Selection of immunoglobulin diversity gene reading frames in B cell lymphoproliferative disorders

    No full text
    Assembly of immunoglobulin (Ig) heavy (H) variable (V), diversity (D) and joining (J) gene segments constitutes an important determinant of commitment to the B cell lineage. The randomly selected D gene segment of a given VDJ complex can potentially be found in all three possible reading frames (RFs). In the present study, we examined the distribution of D gene RF in ‘immature’ and ‘mature’ B cell lymphoproliferative disorders (BCLD). We analyzed the clonotypic VDJ junctional sequences of our previously reported cases of follicular lymphoma (FL), as well as bcl-2/IgH junctions with recognized D elements, A marked under-representation of RF1 was observed, with almost equal usage of RF2 and RF3. A literature search for VDJ published sequences in various BCLD identified a similar pattern of D gene RF usage in multiple myeloma (MM), with marked predilection for RFs 2 and 3, In B cell chronic lymphocytic leukemia (B-CLL), the pattern of D-RF was 25% for RF1, 46% for RF2 and 29% for RF3, while in B cell precursor acute lymphoblastic leukemia (precursor-B-ALL) all three RFs were used with similar frequencies. The marked under-representation of RF1 in FL and MM clonogenic rearranged D genes suggests selection on the basis of antigenic properties, possibly due to constraints in forming a flexible loop within CDR3. In contrast, the more even distribution of D-RF usage in B-CLL and precursor-B-ALL suggests that, for these disorders, transformation of a immature type B cell repertoire has occurred
    corecore