199 research outputs found

    Interpretation of comet spectra

    Get PDF
    The spectra of comets are discussed by considering successively a number of molecules that have been studied recently: CN, CH, C2, C3, OH, CH(+). The first two of this list, CN and CH, have been analyzed in greatest detail. A classification of the spectra of cometary heads is introduced

    From C/Mrkos to P/Halley: 30 years of cometary spectroscopy

    Get PDF
    An Atlas of Cometary Spectra was compiled, as a sequel to the well-known Atlas published by Swings and Haser in 1956. The new atlas comprises some 400 reproductions of cometary spectra secured in the world's largest observatories during the three decades or so from the passage of comet Mrkos 1957 V, for which the very first high-dispersion spectrum was obtained, to the return of Halley's comet. The illustrations refer to 40 different comet apparitions; they are grouped into a set of 186 loose 11 x 14 in. plates, while the texts, comments, and relevant data are given in a separate booklet. The main purpose of this atlas is to show in detail the tremendous progress which was achieved in cometary spectroscopy during the period covered, essentially thanks to the use of high-resolution coude spectrographs and large telescopes, the considerable extension of the observed wavelength range, and the advent of electronic detectors. It is divided into two parts. Part 1, which contains about two-thirds of the selected material, presents photographic spectra, while electronically recorded spectra covering the vacuum ultraviolet, through the optical, infrared, and radio regions appear in Part 2

    Chemical Compositions of Four Metal-poor Giants

    Full text link
    We present the chemical compositions of four K giants CS 22877-1, CS 22166-16, CS22169-35 and BS 16085 - 0050 that have [Fe/H] in the range -2.4 to -3.1. Metal-poor stars with [Fe/H] < -2.5 are known to exhibit considerable star - to - star variations of many elements. This quartet confirms this conclusion. CS 22877-1 and CS 22166-16 are carbon-rich. There is significant spread for [α\alpha/Fe] within our sample where [α\alpha/Fe] is computed from the mean of the [Mg/Fe], and [Ca/Fe] ratios. BS 16085 - 0050 is remarkably α\alpha enriched with a mean [α\alpha/Fe] of ++0.7 but CS 22169-35 is α\alpha-poor. The aluminium abundance also shows a significant variation over the sample. A parallel and unsuccessful search among high-velocity late-type stars for metal-poor stars is described.Comment: 14 pages (text), 4 tables, 3 figures, Accepted for publication in PAS

    The CN Isotopic Ratios In Comets

    Get PDF
    Our aim is to determine the isotopic ratios (12)C/(13)C and (14)N/(15)N in a variety of comets and link these measurements to the formation and evolution of the solar system. The (12)C/(13)C and (14)N/(15)N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The (12)C/(13)C and (14)N/(15)N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 +/- 3.6 and 147.8 +/- 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN.NSFAstronom

    The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR)

    Full text link
    The 16OH/18OH and OD/OH isotope ratios are measured in the Oort-Cloud comet C/2002 T7 (LINEAR) through ground-based observations of the OH ultraviolet bands at 3063 A (0,0) and 3121 A (1,1) secured with the Very Large Telescope (VLT) feeding the Ultraviolet-Visual Echelle Spectrograph (UVES). From the 16OH/18OH ratio, we find 16O/18O = 425 +/- 55, equal within the uncertainties to the terrestrial value and to the ratio measured in other comets, although marginally smaller. We also estimate OD/OH from which we derive D/H = 2.5 +/- 0.7 10-4 in water. This value is compatible with the water D/H ratios evaluated in other comets and marginally higher than the terrestrial value.Comment: Accepted for publication in A&A Letter

    Extremely Metal-Poor Stars. VII. The Most Metal-Poor Dwarf, CS 22876-032

    Full text link
    We report high-resolution, high-signal-to-noise, observations of the extremely metal-poor double-lined spectroscopic binary CS 22876-032. The system has a long period : P = 424.7 ±\pm 0.6 days. It comprises two main sequence stars having effective temperatures 6300 K and 5600 K, with a ratio of secondary to primary mass of 0.89 ±\pm 0.04. The metallicity of the system is [Fe/H] = -3.71 ±\pm 0.11 ±\pm 0.12 (random and systematic errors) -- somewhat higher than previous estimates. We find [Mg/Fe] = 0.50, typical of values of less extreme halo material. [Si/Fe], [Ca/Fe], and [Ti/Fe], however, all have significantly lower values, ~ 0.0-0.1, suggesting that the heavier elements might have been underproduced relative to Mg in the material from which this object formed. In the context of the hypothesis that the abundance patterns of extremely metal-poor stars are driven by individual enrichment events and the models of Woosley and Weaver (1995), the data for CS 22876-032 are consistent with its having been enriched by a zero-metallicity supernova of mass 30 M_{\odot}. As the most metal-poor near-main-sequence-turnoff star currently known, the primary of the system has the potential to strongly constrain the primordial lithium abundance. We find A(Li) (= log(N(Li)/N(H)) + 12.00) = 2.03 ±\pm 0.07, which is consistent with the finding of Ryan et al. (1999) that for stars of extremely low metallicity A(Li) is a function of [Fe/H].Comment: 27 pages, 9 figures, accepted for publication in The Astrophysical Journal, Sept. 1, 2000 issu

    Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes

    Get PDF
    From millimeter and optical observations of the Jupiter-family comet 17P/Holmes performed soon after its huge outburst of October 24, 2007, we derive 14 N/15N = 139 +/- 26 in HCN, and 14N/15N = 165 +/- 40 in CN, establishing that HCN has the same non-terrestrial isotopic composition as CN. The same conclusion is obtained for the long-period comet C/1995 O1 (Hale-Bopp) after a reanalysis of previously published measurements. These results are compatible with HCN being the prime parent of CN in cometary atmospheres. The 15N excess relative to the Earth atmospheric value indicates that N-bearing volatiles in the solar nebula underwent important N isotopic fractionation at some stage of Solar System formation. HCN molecules never isotopically equilibrated with the main nitrogen reservoir in the solar nebula before being incorporated in Oort-cloud and Kuiper-belt comets. The 12C/13C ratios in HCN and CN are measured to be consistent with the terrestrial value.Comment: Accepted for publication in the Astrophysical Journal (Letters) 4 page

    Inner Coma Imaging of Comet Levy (1990c) with the Hubble Space Telescope

    Get PDF
    Observations of comet Levy (1990c) were carried out with the Hubble Space Telescope (HST) on UT 27 Sep 1990. At that time, both the heliocentric and geocentric distances were ~1 AU. The comet was imaged with the Wide Field Camera (WFC) through both red and blue filters, which were selected to isolate continuum emission peaking sharply at the nucleus. Each WFC pixel is 0."1 on a side, corresponding to 78 km at the comet. The longest exposures (4 sec) through the red filter had sufficient signal to noise that image deconvolution could be used to recover virtually the full spatial resolution of HST

    Isotopic abundance of nitrogen and carbon in distant comets

    Get PDF
    The 12C14N/12C15N and 12C14N/13C14N isotopic ratios have been determined in comets C/1995 O1 (Hale-Bopp), C/2001 Q4 (NEAT) and C/2003 K4 (LINEAR) at heliocentric distances of, respectively, 2.7, 3.7 and 2.6 AU. These ratios have also been measured at r ~ 1 AU. No significant differences were found between all determinations, nor with the value obtained for other comets. If confirmed, the discrepancy between the nitrogen isotopic ratios from optical and millimeter measurements on CN and HCN would rule out HCN as a major parent of the cometary CN radicals.Comment: Accepted for publication in Astronomy ans Astrophysic

    The r-Process Enriched Low Metallicity Giant HD 115444

    Full text link
    New high resolution, very high signal-to-noise spectra of ultra-metal-poor (UMP) giant stars HD 115444 and HD 122563 have been gathered with the High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7m Telescope. With these spectra, line identification and model atmosphere analyses have been conducted, emphasizing the neutron-capture elements. Twenty elements with Z > 30 have been identified in the spectrum of HD 115444. This star is known to have overabundances of the neutron-capture elements, but it has lacked a detailed analysis necessary to compare with nucleosynthesis predictions. The new study features a line-by-line differential abundance comparison of HD 115444 with the bright, well-studied halo giant HD 122563. For HD 115444, the overall metallicity is [Fe/H]~ -3.0. The abundances of the light and iron-peak elements generally show the same pattern as other UMP stars (e.g. overdeficiencies of manganese and chromium, overabundances of cobalt), but the differential analysis indicates several nucleosynthesis signatures that are unique to each star.Comment: To Appear in the Astrophysical Journa
    corecore