151 research outputs found

    Simbol-X capability of detecting the non-thermal emission of stellar flares

    Get PDF
    We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.Comment: 2 pages, 2 postscript figures, proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", to be published in "Memorie of the Italian Astronomical Society

    Modeling X-ray emission from stellar coronae

    Full text link
    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.Comment: 4 pages, proceedings of Cool Stars 15, St Andrews, July 2008, to be published in the Conference Proceedings Series of the American Institute of Physic

    Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

    Get PDF
    High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods, by measuring the position of a selected sample of emission lines, and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Our results indicate that complex magnetic field geometries, such as that of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the CIV resonance doublet at 1550 Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at 0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version after language editor corrections; 16 pages, 8 figures, 6 table

    On the observability of T Tauri accretion shocks in the X-ray band

    Full text link
    Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We explore the space of relevant parameters and synthesize from the model results the X-ray emission in the [0.5-8.0] keV band and in the resonance lines of O VII (21.60 Ang) and Ne IX (13.45 Ang), taking into account the absorption from the chromosphere. Results. The accretion stream properties influence the temperature and the stand-off height of the shocked slab and its sinking in the chromosphere, determining the observability of the shocked plasma. Our model predicts that X-ray observations preferentially detect emission from low density and high velocity shocked accretion streams due to the large absorption of dense post-shock plasma. In all the cases examined, the post-shock zone exhibits quasi-periodic oscillations due to thermal instabilities, but in the case of inhomogeneous streams and beta<<1, the shock oscillations are hardly detectable. Conclusions. We suggest that, if accretion streams are inhomogeneous, the selection effect introduced by the absorption on observable plasma components may explain the discrepancy between the accretion rate measured by optical and X-ray data as well as the different densities measured using different He-like triplets in the X-ray band.Comment: 12 pages, 7 figures. Accepted for publication on A&

    The Great Flare of 2021 November 19 on AD Leonis: Simultaneous XMM-Newton and TESS observations

    Get PDF
    We present a detailed analysis of a superflare on the active M dwarf star AD Leonis. The event presents a rare case of a stellar flare that was simultaneously observed in X-rays (with XMM-Newton) and in the optical (with the Transiting Exoplanet Survey Satellite, TESS). The radiated energy in the 0.2 - 12 keV X-ray band (1.26 +/- 0.01 x 10(33) erg) and the bolometric value (E-F,E-bol=5.57 +/- 0.03 x 10(33) erg) place this event at the lower end of the superflare class. The exceptional photon statistics deriving from the proximity of AD Leo has enabled measurements in the 1 - 8 angstrom GOES band for the peak flux (X1445 class) and integrated energy (E-F,E-GOES=4.30 +/- 0.05 x 10(32) erg), which enables a direct comparison with data on flares from our Sun. From extrapolations of empirical relations for solar flares, we estimate that a proton flux of at least 10(5)cm(-2)s(-1)sr(-1) accompanied the radiative output. With a time lag of 300 s between the peak of the TESS white-light flare and the GOES band flare peak as well as a clear Neupert effect, this event follows the standard (solar) flare scenario very closely. Time-resolved spectroscopy during the X-ray flare reveals, in addition to the time evolution of plasma temperature and emission measure, a temporary increase in electron density and elemental abundances, and a loop that extends into the corona by 13% of the stellar radius (4 x 10(9) cm). Independent estimates of the footprint area of the flare from TESS and XMM-Newton data suggest a high temperature of the optical flare (25000 K), but we consider it more likely that the optical and X-ray flare areas represent physically distinct regions in the atmosphere of AD Leo

    CSI 2264: Simultaneous optical and X-ray variability in pre-Main Sequence stars. I: Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    Get PDF
    Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.Comment: Accepted for publication by Astronomy & Astrophysic

    X-ray emission from dense plasma in CTTSs: Hydrodynamic modeling of the accretion shock

    Full text link
    High spectral resolution X-ray observations of CTTSs demonstrate the presence of plasma at T~2-3X10^6 K and n_e~10^11-10^13 cm^-3, unobserved in non-accreting stars. Stationary models suggest that this emission is due to shock-heated accreting material, but they do not allow to analyze the stability of such material and its position in the stellar atmosphere. We investigate the dynamics and the stability of shock-heated accreting material in CTTSs and the role of the stellar chromosphere in determining the position and the thickness of the shocked region. We perform 1-D HD simulations of the impact of the accretion flow onto chromosphere of a CTTS, including the effects of gravity, radiative losses from optically thin plasma, thermal conduction and a well tested detailed model of the stellar chromosphere. Here we present the results of a simulation based on the parameters of the CTTS MP Mus. We find that the accretion shock generates an hot slab of material above the chromosphere with a maximum thickness of 1.8X10^9 cm, density n_e~10^11-10^2 cm^-3, temperature T~3X10^6 K and uniform pressure equal to the ram pressure of the accretion flow (~450 dyn cm^-2). The base of the shocked region penetrates the chromosphere and stays where the ram pressure is equal to the thermal pressure. The system evolves with quasi-periodic instabilities of the material in the slab leading to cyclic disappearance and re-formation of the slab. For an accretion rate of ~10^-10 M_sun yr^-1, the shocked region emits a time-averaged X-ray luminosity L_X~7X10^29 erg s^-1, which is comparable to the X-ray luminosity observed in CTTSs of the same mass. Furthermore, the X-ray spectrum synthesized from the simulation matches in detail all the main features of the O VIII and O VII lines of the star MP Mus.Comment: Accepted for publication as a Letter in Astronomy & Astrophysic

    Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Get PDF
    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface. In general, a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the shocked plasma lower than in the case of uniform magnetic field. CONCLUSIONS. The initial strength and configuration of the magnetic field in the impact region of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. The field strength and configuration influence also the energy balance of the shocked plasma, its emission measure at T > 1 MK being lower than expected for a uniform field. The above effects contribute in underestimating the mass accretion rates derived in the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd

    The flaring and quiescent components of the solar corona

    Full text link
    The solar corona is a template to understand stellar activity. The Sun is a moderately active star, and its corona differs from active stars: active stellar coronae have a double-peaked EM(T) with the hot peak at 8-20 MK, while the non flaring solar corona has one peak at 1-2 MK. We study the average contribution of flares to the solar EM(T) to investigate indirectly the hypothesis that the hot peak of the EM(T) of active stellar coronae is due to a large number of unresolved solar-like flares, and to infer properties on the flare distribution from nano- to macro-flares. We measure the disk-integrated time-averaged emission measure, EM_F(T), of an unbiased sample of solar flares analyzing uninterrupted GOES/XRS light curves over time intervals of one month. We obtain the EM_Q(T) of quiescent corona for the same time intervals from the Yohkoh/SXT data. To investigate how EM_F(T) and EM_Q(T) vary with the solar cycle, we evaluate them at different phases of the cycle (from Dec. 1991 to Apr. 1998). Irrespective of the solar cycle phase, EM_F(T) appears like a peak of the distribution significantly larger than the values of EM_Q(T) for T~5-10 MK. As a result the time-averaged EM(T) of the whole solar corona is double-peaked, with the hot peak, due to time-averaged flares, located at temperature similar of that of active stars, but less enhanced. The EM_F(T) shape supports the hypothesis that the hot EM(T) peak of active coronae is due to unresolved solar-like flares. If this is the case, quiescent and flare components should follow different scaling laws for increasing stellar activity. In the assumption that the heating of the corona is entirely due to flares, from nano- to macro-flares, then either the flare distribution or the confined plasma response to flares, or both, are bimodal.Comment: 8 pages, 7 postscript figures, accepted for publication in Astronomy and Astrophysic

    Non-stationary dynamo & magnetospheric accretion processes of the classical T Tauri star V2129 Oph

    Full text link
    We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes of the classical TTauri star (cTTS) V2129Oph. In this paper, we present spectropolarimetric observations collected in 2009 July with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT). Circularly polarised Zeeman signatures are clearly detected, both in photospheric absorption and accretion-powered emission lines, from time-series of which we reconstruct new maps of the magnetic field, photospheric brightness and accretion-powered emission at the surface of V2129Oph using our newest tomographic imaging tool - to be compared with those derived from our old 2005 June data set, reanalyzed in the exact same way. We find that in 2009 July, V2129Oph hosts octupolar & dipolar field components of about 2.1 & 0.9kG respectively, both tilted by about 20deg with respect to the rotation axis; we conclude that the large-scale magnetic topology changed significantly since 2005 June (when the octupole and dipole components were about 1.5 and 3 times weaker respectively), demonstrating that the field of V2129Oph is generated by a non-stationary dynamo. We also show that V2129Oph features a dark photospheric spot and a localised area of accretion-powered emission, both close to the main surface magnetic region (hosting fields of up to about 4kG in 2009 July). We finally obtain that the surface shear of V2129Oph is about half as strong as solar. From the fluxes of accretion-powered emission lines, we estimate that the observed average logarithmic accretion rate (in Msun/yr) at the surface of V2129Oph is -9.2+-0.3 at both epochs, peaking at -9.0 at magnetic maximum. It implies in particular that the radius at which the magnetic field of V2129Oph truncates the inner accretion disc is 0.93x and 0.50x the corotation radius in 2009 July and 2005 June respectively.Comment: MNRAS in press - 16 pages, 9 figure
    corecore