3,756 research outputs found

    Tracking ocean wave spectrum from SAR images

    Get PDF
    An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction

    Topological stability of stored optical vortices

    Get PDF
    We report an experiment in which an optical vortex is stored in a vapor of Rb atoms. Due to its 2\pi phase twist, this mode, also known as the Laguerre-Gauss mode, is topologically stable and cannot unwind even under conditions of strong diffusion. To supplement our finding, we stored a flat phase Gaussian beam with a dark center. Contrary to the optical vortex, which stays stable for over 100 microseconds, the dark center in the retrieved flat-phased image was filled with light at storage times as small as 10 microseconds. This experiment proves that higher electromagnetic modes can be converted into atomic coherences, and that modes with phase singularities are robust to decoherence effects such as diffusion. This opens the possibility to more elaborate schemes for two dimensional information storage in atomic vapors.Comment: 4 pages, 4 figures v2: minor grammatical corrections v3: problem with references fixed v4: minor clarifications added to the tex

    Evolution of an elliptical bubble in an accelerating extensional flow

    Get PDF
    Mathematical models that describe the dynamical behavior of a thin gas bubble embedded in a glass fiber during a fiber drawing process have been discussed and analyzed. The starting point for the mathematical modeling was the equations presented in [1] for a glass fiber with a hole undergoing extensional flow. These equations were reconsidered here with the additional reduction that the hole, i.e. the gas bubble, was thin as compared to the radius of the fiber and of finite extent. The primary model considered was one in which the mass of the gas inside the bubble was fixed. This fixed-mass model involved equations for the axial velocity and fiber radius, and equations for the radius of the bubble and the gas pressure inside the bubble. The model equations assumed that the temperature of the furnace of the drawing tower was known. The governing equations of the bubble are hyperbolic and predict that the bubble cannot extend beyond the limiting characteristics specified by the ends of the initial bubble shape. An analysis of pinch-off was performed, and it was found that pinch-off can occur, depending on the parameters of the model, due to surface tension when the bubble radius is small. In order to determine the evolution of a bubble, a numerical method of solution was presented. The method was used to study the evolution of two different initial bubble shapes, one convex and the other non-convex. Both initial bubble shapes had fore-aft symmetry, and it was found that the bubbles stretched and elongated severely during the drawing process. For the convex shape, fore-aft symmetry was lost in the middle of the drawing process, but the symmetry was re-gained by the end of the drawing tower. A small amount of pinch-off was observed at each end for this case, so that the final bubble length was slightly shorter than its theoretical maximum length. For the non-convex initial shape, pinch-off occurred in the middle of the bubble resulting in two bubbles by the end of the fiber draw. The two bubbles had different final pressures and did not have fore-aft symmetry. An extension of the fixed-mass model was considered in which the gas in the bubble was allowed to diffuse into the surrounding glass. The governing equations for this leaky-mass model were developed and manipulated into a form suitable for a numerical treatment

    Beta-decay properties of 25^{25}Si and 26^{26}P

    Get PDF
    The β\beta-decay properties of the neutron-deficient nuclei 25^{25}Si and 26^{26}P have been investigated at the GANIL/LISE3 facility by means of charged-particle and γ\gamma-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction. B(GT) values derived from the absolute measurement of the β\beta-decay branching ratios give rise to a quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of 43.7 (6) ms was determined for 26^{26}P, the β\beta- (2)p decay mode of which is described

    Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos

    Full text link
    We present a quantum phase space model of Bose-Einstein condensate (BEC) in a double well potential. In a two-mode Fock-state analysis we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase space information is extracted from the stationary quantum states using the Husimi distribution function. It is shown that the quantum states are localized on the known classical phase space orbits of a nonrigid physical pendulum, and thus the novel phase space characteristics of a nonrigid physical pendulum such as the π\pi motions are seen to be a property of the exact quantum states. Low lying states are harmonic oscillator like libration states while the higher lying states are Schr\"odinger cat-like superpositions of two pendulum rotor states. To study the dynamics in phase space, a comparison is made between a displaced quantum wavepacket and the trajectories of a swarm of points in classical phase space. For a driven double well, it is shown that the classical chaotic dynamics is manifest in the dynamics of the quantum states pictured using the Husimi distribution. Phase space analogy also suggests that a π\pi phase displaced wavepacket put on the unstable fixed point on a separatrix will bifurcate to create a superposition of two pendulum rotor states - a Schr\"odinger cat state (number entangled state) for BEC. It is shown that the choice of initial barrier height and ramping, following a π\pi phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure

    Olefin Hydroarylation Catalyzed by (Pyridyl-Indolate)Pt(II) Complexes: Catalytic Efficiencies and Mechanistic Aspects

    Get PDF
    A series of Pt(II) complexes of the type (N–N)PtPh(SR_2) (N–N = 2,2′-pyridyl-indolate) were prepared, and their performance as catalysts for the hydroarylation of olefins was assessed. Evidence that the catalysis is homogeneous and is Pt-mediated is provided by control experiments with added hindered base (2,6-di-tert-butyl-4-methylpyridine) and Hg(0). Two potential catalytic intermediates, (^tBuPyInd)PtPh(C_2H_4) and (^tBuPyInd)Pt(CH_2CH_2Ph)(C_2H_4), were synthesized, and their catalytic efficacy was explored. Additionally, decomposition and deactivation pathways, including styrene formation via β-hydride elimination and ligand reductive demetalation, were identified

    Observable Signature of the Berezinskii-Kosterlitz-Thouless Transition in a Planar Lattice of Bose-Einstein Condensates

    Full text link
    We investigate the possibility that Bose-Einstein condensates (BECs), loaded on a 2D optical lattice, undergo - at finite temperature - a Berezinskii-Kosterlitz-Thouless (BKT) transition. We show that - in an experimentally attainable range of parameters - a planar lattice of BECs is described by the XY model at finite temperature. We demonstrate that the interference pattern of the expanding condensates provides the experimental signature of the BKT transition by showing that, near the critical temperature, the k=0 component of the momentum distribution and the central peak of the atomic density profile sharply decrease. The finite-temperature transition for a 3D optical lattice is also discussed, and the analogies with superconducting Josephson junction networks are stressed through the text
    • …
    corecore