77 research outputs found

    Increasing uncoupling protein-2 in pancreatic beta cells does not alter glucose-induced insulin secretion but decreases production of reactive oxygen species

    Get PDF
    Aims/hypothesis: Levels of uncoupling protein-2 (UCP2) are regulated in the pancreatic beta cells and an increase in the protein level has been associated with mitochondrial uncoupling and alteration in glucose-stimulated insulin secretion. However, it is not clear whether an increase in uncoupling protein-2 per se induces mitochondrial uncoupling and affects ATP generation and insulin secretion. Materials and methods: Transgenic mice with beta cell-specific overexpression of the human UCP2 gene and INS-1 cells with doxycycline-inducible overproduction of the protein were generated and the consequences of increased levels of UCP2 on glucose-induced insulin secretion and on parameters reflecting mitochondrial uncoupling were determined. Results: In transgenic mice, an increase in beta cell UCP2 protein concentration did not significantly modify plasma glucose and insulin levels. Glucose-induced insulin secretion and elevation in the ATP/ADP ratio were unaltered by an increase in UCP2 level. In INS-1 cells, a similar increase in UCP2 level did not modify glucose-induced insulin secretion, cytosolic ATP and ATP/ADP ratio, or glucose oxidation. Increased levels of UCP2 did not modify the mitochondrial membrane potential and oxygen consumption. Increased UCP2 levels decreased cytokine-induced production of reactive oxygen species. Conclusion/interpretation: The results obtained in transgenic mice and in the beta cell line do not support the hypothesis that an increase in UCP2 protein per se uncouples the mitochondria and decreases glucose-induced insulin secretion. In contrast, the observation that increased UCP2 levels decrease cytokine-induced production of reactive oxygen species indicates a potential protective effect of the protein on beta cells, as observed in other cell type

    The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala

    Get PDF
    In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.This work was supported by Grants of the French National Research Agency (Agence Nationale de la Recherche; ANR) [ANR-13-BSV4-0011] and by the French Government through the ‘Investments for the Future’ LABEX SIGNALIFE [ANR-11-LABX-0028-01] to M.S., by the Spanish Government (BFU2007-60263 and BFU2010-17305) to A.F, and by the Medical Research Council (MR/K013750/1) to T.T. N.R.-R. is funded by a postdoctoral fellowship from the Ville de Nice, France (“Aide Individuelle aux Jeunes Chercheurs 2016”).Peer reviewe

    A Novel Core Genome-Encoded Superantigen Contributes to Lethality of Community-Associated MRSA Necrotizing Pneumonia

    Get PDF
    Bacterial superantigens (SAg) stimulate T-cell hyper-activation resulting in immune modulation and severe systemic illnesses such as Staphylococcus aureus toxic shock syndrome. However, all known S. aureus SAgs are encoded by mobile genetic elements and are made by only a proportion of strains. Here, we report the discovery of a novel SAg staphylococcal enterotoxin-like toxin X (SElX) encoded in the core genome of 95% of phylogenetically diverse S. aureus strains from human and animal infections, including the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 clone. SElX has a unique predicted structure characterized by a truncated SAg B-domain, but exhibits the characteristic biological activities of a SAg including Vβ-specific T-cell mitogenicity, pyrogenicity and endotoxin enhancement. In addition, SElX is expressed by clinical isolates in vitro, and during human, bovine, and ovine infections, consistent with a broad role in S. aureus infections of multiple host species. Phylogenetic analysis suggests that the selx gene was acquired horizontally by a progenitor of the S. aureus species, followed by allelic diversification by point mutation and assortative recombination resulting in at least 17 different alleles among the major pathogenic clones. Of note, SElX variants made by human- or ruminant-specific S. aureus clones demonstrated overlapping but distinct Vβ activation profiles for human and bovine lymphocytes, indicating functional diversification of SElX in different host species. Importantly, SElX made by CA-MRSA USA300 contributed to lethality in a rabbit model of necrotizing pneumonia revealing a novel virulence determinant of CA-MRSA disease pathogenesis. Taken together, we report the discovery and characterization of a unique core genome-encoded superantigen, providing new insights into the evolution of pathogenic S. aureus and the molecular basis for severe infections caused by the CA-MRSA USA300 epidemic clone

    3T3 Cell Lines Stably Expressing Pax6 or Pax6(5a) – A New Tool Used for Identification of Common and Isoform Specific Target Genes

    Get PDF
    Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities
    corecore