2,837 research outputs found
Drift velocity and gain in argon- and xenon-based mixtures
We present measurements of drift velocities and gains in gas mixtures based
on Ar and Xe, with CO2, CH4, and N2 as quenchers, and compare them with
calculations. In particular, we show the dependence of Ar- and Xe-CO2 drift
velocities and gains on the amount of nitrogen contamination in the gas, which
in real experiments may build up through leaks. A quantification of the Penning
mechanism which contributes to the Townsend coefficients of a given gas mixture
is proposed.Comment: 11 pages, 7 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
A comprehensive study of rate capability in Multi-Wire Proportional Chambers
Systematic measurements on the rate capability of thin MWPCs operated in
Xenon, Argon and Neon mixtures using CO2 as UV-quencher are presented. A good
agreement between data and existing models has been found, allowing us to
present the rate capability of MWPCs in a comprehensive way and ultimately
connect it with the mobilities of the drifting ions.Comment: 29 pages, 18 figure
Measurement of spark probability of GEM detector for CBM muon chamber (MUCH)
The stability of triple GEM detector setups in an environment of high
energetic showers is studied. To this end the spark probability in a shower
environment is compared to the spark probability in a pion beam.Comment: 5 pages, 10 figure
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators
We present measurements of the spectral distribution of transition radiation
generated by electrons of momentum 1 to 10 GeV/c in different radiator types.
We investigate periodic foil radiators and irregular foam and fiber materials.
The transition radiation photons are detected by prototypes of the drift
chambers to be used in the Transition Radiation Detector (TRD) of the ALICE
experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The
measurements are compared to simulations in order to enhance the quantitative
understanding of transition radiation production, in particular the momentum
dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
- …
