563 research outputs found

    Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer

    Get PDF
    Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    Extreme geomagnetic disturbances due to shocks within CMEs

    Get PDF
    We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\u27s magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing

    Structure and Dynamics of the Sun's Open Magnetic Field

    Full text link
    The solar magnetic field is the primary agent that drives solar activity and couples the Sun to the Heliosphere. Although the details of this coupling depend on the quantitative properties of the field, many important aspects of the corona - solar wind connection can be understood by considering only the general topological properties of those regions on the Sun where the field extends from the photosphere out to interplanetary space, the so-called open field regions that are usually observed as coronal holes. From the simple assumptions that underlie the standard quasi-steady corona-wind theoretical models, and that are likely to hold for the Sun, as well, we derive two conjectures on the possible structure and dynamics of coronal holes: (1) Coronal holes are unique in that every unipolar region on the photosphere can contain at most one coronal hole. (2) Coronal holes of nested polarity regions must themselves be nested. Magnetic reconnection plays the central role in enforcing these constraints on the field topology. From these conjectures we derive additional properties for the topology of open field regions, and propose several observational predictions for both the slowly varying and transient corona/solar wind.Comment: 26 pages, 6 figure

    The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream

    Full text link
    Observations show significant H\alpha-emissions in the Galactic halo near the edges of cold gas clouds of the Magellanic Stream. The source for the ionization of the cold gas is still a widely open question. In our paper we discuss the critical velocity effect as a possible explanation for the observed H\alpha-emission. The critical velocity effect can yield a fast ionization of cold gas if this neutral gas passes through a magnetized plasma under suitable conditions. We show that for parameters that are typical for the Magellanic Stream the critical velocity effect has to be considered as a possible ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa

    Energy spectra of the ocean's internal wave field: theory and observations

    Full text link
    The high-frequency limit of the Garrett and Munk spectrum of internal waves in the ocean and the observed deviations from it are shown to form a pattern consistent with the predictions of wave turbulence theory. In particular, the high frequency limit of the Garrett and Munk spectrum constitutes an {\it exact} steady state solution of the corresponding kinetic equation.Comment: 4 pages, one color figur
    corecore