109 research outputs found

    Functional loss of IKBE leads to NF-KB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-?B is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-?B pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes I?B?, a negative regulator of NF-?B in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced I?B? protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that I?B? loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-?B deregulation during lymphomagenesis. <br/

    Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors.

    Get PDF
    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations (BIRC3, MYD88, NOTCH1, SF3B1 and TP53) and cytogenetic aberrations, we reveal a subset-biased acquisition of gene mutations. More specifically, the frequency of NOTCH1 mutations was found to be enriched in subsets expressing unmutated immunoglobulin genes, i.e. #1, #6, #8 and #59 (22-34%), often in association with trisomy 12, and was significantly different (P<0.001) to the frequency observed in subset #2 (4%, aggressive disease, variable somatic hypermutation status) and subset #4 (1%, indolent disease, mutated immunoglobulin genes). Interestingly, subsets harboring a high frequency of NOTCH1 mutations were found to carry few (if any) SF3B1 mutations. This starkly contrasts with subsets #2 and #3 where, despite their immunogenetic differences, SF3B1 mutations occurred in 45% and 46% of cases, respectively. In addition, mutations within TP53, whilst enriched in subset #1 (16%), were rare in subsets #2 and #8 (both 2%), despite all being clinically aggressive. All subsets were negative for MYD88 mutations, whereas BIRC3 mutations were infrequent. Collectively, this striking bias and skewed distribution of mutations and cytogenetic aberrations within specific chronic lymphocytic leukemia subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s

    Listeria monocytogenes in Milk Products

    Get PDF
    peer-reviewedMilk and milk products are frequently identified as vectors for transmission of Listeria monocytogenes. Milk can be contaminated at farm level either by indirect external contamination from the farm environment or less frequently by direct contamination of the milk from infection in the animal. Pasteurisation of milk will kill L. monocytogenes, but post-pasteurisation contamination, consumption of unpasteurised milk and manufacture of unpasteurised milk products can lead to milk being the cause of outbreaks of listeriosis. Therefore, there is a concern that L. monocytogenes in milk could lead to a public health risk. To protect against this risk, there is a need for awareness surrounding the issues, hygienic practices to reduce the risk and adequate sampling and analysis to verify that the risk is controlled. This review will highlight the issues surrounding L. monocytogenes in milk and milk products, including possible control measures. It will therefore create awareness about L. monocytogenes, contributing to protection of public health

    Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia

    Get PDF
    NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis

    Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains

    No full text
    Follicular lymphoma cells carry surface immunoglobulin whose heavy chain variable (V-H) regions exhibit considerable divergence from the aminoacid sequence predicted by the germline nucleotide sequence as a result of the somatic hypermutation process. The present study examined the extent of somatic hypermutation in follicular lymphoma kappa light chain variable region (V kappa) genes about which the available data is limited. DNA extracted from fresh frozen lymph node tissue of 14 patients with follicular lymphoma at diagnosis was subjected to polymerase chain reaction (PCR) amplification aimed at detecting clonal V-H and V-L (L: light chain) gene rearrangements. Clonal V kappa gene rearrangements were detected in 10/14 cases. Amplified V-H and V kappa genes of these 10 cases were directly sequenced by the dideoxy-chain termination method. In all cases, rearranged V-H genes demonstrated numerous mutations clustering in the complementarity determining regions (CDRs), in keeping with previous reports, The degree of divergence of the rearranged V kappa genes from the closest homologous germline V kappa genes varied significantly. Furthermore, two patterns of mutations were observed: (i) in six cases (60%), mutations were most often of the replacement (R) type (changing the aminoacid sequence of the encoded polypeptide) in the CDRs and of the silent (S) type (leaving the aminoacid sequence of the encoded polypeptide unchanged) in the framework regions (FWRs) resulting in R:S ratios significantly greater than would have occurred by chance; (ii) in four cases (40%), very few or no mutations were observed and the distribution of mutations as well as the R:S mutation ratios did not differ significantly from what would have occurred by chance alone. These findings imply that, compared to their partner heavy chains, the kappa light chains of follicular lymphoma neoplastic B-cells’ surface immunoglobulin (sIg): (i) are less affected by somatic hypermutation; (ii) play a less significant role in the antigen selection process

    Activation-induced cytidine deaminase splicing patterns in chronic lymphocytic leukemia

    No full text
    Activation-induced cytidine deaminase (AID) is critically implicated in somatic hypermutation (SHM) and class switch recombination (CSR). AID is expressed as a native transcript and as several splice variants, with as yet undefined roles. Chronic lymphocytic leukemia (CLL) leukemic B cells have also been shown to express AID transcripts, especially in cases with unmutated immunoglobulin (IG) genes. Therefore, AID expression in CLL might potentially be relevant to the disease. The available data on AID-mRNA splicing patterns in CLL are limited and conflicting. Here, we investigated AID-mRNA isoform expression in a series of 195 CLL patients and explored associations with IG gene mutational status and surface immunoglobulin (sIg) isotype expression. Full-length AID transcripts and two splice variants were detected in 110/91/95 cases, respectively. Co-expression of all three AID-mRNA isoforms was significantly more frequent (p&lt;0.001) in cases with unmutated IGHV genes. No significant differences were identified between sIgG vs. sIgMD cases regarding the frequency of AID-mRNA expression. However, expression of at least one AID-mRNA isoform predominated among mutated IgG vs. mutated IgMD cases (p=0.05). These results attest to the biological heterogeneity of CLL and also indicate that AID splice variants may inhibit SHM in CLL cells of the unmutated subtype. © 2009 Elsevier Inc
    corecore